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Logistics

Assignment 1: Both parts Due TONIGHT by 11:59pm
•Part A: Gradescope
•Part B: Gradescope + Canvas

Assignment 2 (Buffer Overflow Attacks): Released on Friday afternoon
•For Assignment 2 only, you will use a different course VM (with a 

different hostname): read the assignment instructions for details



Outline: Crypto + Software Security Wrap-up

1. Memory Safety Defenses

• Fuzzing

• Memory Safe Languages

2. Crypto Part 1: Symmetric Key Cryptography



Program Fuzzing: Find bugs before release

Idea: Developer runs their program on huge number of automatically-generated inputs, 

searches for crashes, and fixes bugs before releasing software

"A few weeks ago, my kids wanted to hack my Linux desktop, so they typed and 

clicked everywhere while I was standing behind them looking at them play," wrote a 

user identifying themselves as robo2bobo.

According to the bug report, the two kids pressed random keys on both the 

physical and on-screen keyboards, which eventually led to a crash of the Linux 

Mint screensaver, allowing the two access to the desktop.

"I thought it was a unique incident, but they managed to do it a second time," the 

user added.



Two Types of Fuzzing Strategies

Mutation-based (dumb): Take an initial set of examples (program inputs) and 

make random changes to them.

- Millions of inputs (can run fuzzing forever)

- Possibly lower quality, unlikely to find certain bugs / types of inputs

Generative (smart): Describe inputs to fit format/protocol, then generate inputs 

from that grammar with changes.

- Run with fewer inputs, which can be directed to certain bug types or code logic



Problems with Fuzzing

Mutation-based (dumb): How long to run? And we need a strong server.

Generative (smart): Run out of test cases. A lot more work.

General problems: 

• Need to identify when bug/crash occurs automatically.

• Don’t want to report same bug 1000s of times. 

• How do we prioritize bugs?



Fuzzing in Production

AFL: Popular open-source fuzzer released by Google

Google/Microsoft constantly fuzz products with dedicated servers/VMS.

Anecdote: Found 95 vulnerabilities in Chrome during 2011.



Memory-Safe Languages

Many of our problems can be solved by using “memory-safe” languages.

• The programming model for these languages does not allow for such bugs 

(e.g., no access to pointers / mem addr’s and built-in object bounds checking).

Not Memory-Safe Memory Safe

C Java

C++ Python

Assembly Javascript

Rust, Go, Haskell, …

Ideally, we’d avoid writing programs in unsafe languages, but lots of legacy code 

(and low-level stuff) are written in C/C++.



Pre-deployment, before the program runs: find or prevent bugs

- Fuzzing: proactively finding & fixing bugs by testing many program inputs

- Memory safe languages: automatically avoid exploitable memory bugs

- Done by the application developer

Program runtime: stopping exploits / violations of program’s memory

- Stack Canaries, ASLR, DEP/W+X, etc.

- Implemented by the compiler (stack canary) or operating system (ASLR, W+X)

- Attacks adapt & evolve (Stack reading, ROP attacks, etc.)

Post-exploitation (not covered): limit possible damage from compromise

- Sandboxing and VMs

- Done by user/admin of the system or the app developer (e.g., web browsers)

Recap: Software Defenses



Cryptography: Part 1

(Slides adapted from David Cash and Dan Boneh)



Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads (Theoretical Encryption)

• Stream ciphers (Practical Encryption Tool #1)

• Block ciphers (Practical Encryption Tool #2)



What is Cryptography (for CMSC 23200)?

Cryptography develops algorithms that achieve security goals (CIA).

Cryptography involves using math / theory to stop adversaries.

This Course:

- A brief overview of major crypto concepts and tools

- Cover (some) big “gotchas” in crypto deployments

- Not going to cover math, proofs, or many theoretical details.

Consider taking CS284 (Cryptography)!



Common High-Level Goal: Create a Secure Channel

Client ServerSecure channel

𝑚1 𝑚2

𝑚1𝑚2

Goal: Attacker does not learn anything about the contents of 
messages and cannot tamper with their contents.



Example 1:  Secure communication

(protecting data in motion)

Unable to learn contents or 
tamper with data

Alice

Bank of America



Example 2:  Protected files

(protecting data at rest)

File system

File 1

File 2

Alice
T=0

Alice
T=1

Unable to learn contents 
or tamper with data (file)



Three Key Security Goals of Cryptography

1. Confidentiality: an attacker cannot learn the contents of our data

2. Integrity: an attacker cannot modify the contents of our data

3. Authentication: an attacker cannot masquerade as someone else, 

or make us believe their message/data was sent by someone else



Four Cryptography Problems / Tools

Confidentiality Authenticity/Integrity

Yes
(“Symmetric”)

No
(“Asymmetric”)

Security
Goal

Pre-shared
key?



Four Cryptography Problems / Tools

Confidentiality Authenticity/Integrity

Yes
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Symmetric Encryption

Message 
Authentication Code 

(MAC)
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Goal
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Four Cryptography Problems / Tools

Confidentiality Authenticity/Integrity

Yes
(“Symmetric”)

Symmetric Encryption

Message 
Authentication Code 

(MAC)

No
(“Asymmetric”)

Public-Key Encryption Digital Signatures

Security
Goal

Pre-shared
key?



Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads (Theoretical Encryption)

• Stream ciphers (Practical Encryption Tool #1)

• Block ciphers (Practical Encryption Tool #2)



𝑚

𝐶𝐾
𝑚

𝐾
Encrypt Decrypt

Ciphers (a.k.a. Symmetric Encryption)

• Encryption algorithm: Encrypt(K, m) = c 

• Convert a plaintext message m, into an encrypted message c (ciphertext)

• Decryption algorithm: Decrypt(K, c) = m

• Convert a ciphertext c, back into its plaintext message m

A cipher is a pair of algorithms Encrypt, Decrypt:

Alice Bob



Encryption: Providing Confidentiality

Threat Model: Passive attacker

• Adversary see the ciphertexts, but they cannot modify them in any way

• Attacker’s goal: learn something about plaintext messages from ciphertexts

Today’s Lecture: Symmetric key setting: 

• Alice & Bob already have a shared secret key, K, that the attacker does not know

𝑚

𝐶𝐾
𝑚

𝐾
Encrypt DecryptAlice Bob



𝑚

𝐶𝐾
𝑚

𝐾
Encrypt Decrypt

Ciphers (a.k.a. Symmetric Encryption)

Requirements of a Secure Cipher:

• Correctness: decryption recovers the same message.

• Encrypt(K, m) = c and Decrypt(K, c) = m

• Confidentiality (Security): the ciphertext c reveals nothing about the 

message m (other than the message length)

A cipher is a pair of algorithms Encrypt, Decrypt:

Alice Bob



Evaluating Security of Crypto Algorithms

Kerckhoff’s Principle: 

Assume the adversary knows your algorithms and implementation. 

The only thing they don’t know is the key.

Example: 

- Adversary knows Alice & Bob using SSH, and they know logic/code of all the ciphers 

that SSH allows (e.g., by downloading the open-source software itself)

- But they do not know the keys that Alice & Bob use



Adversary Goal: Break Confidentiality

𝐶1, … , 𝐶𝑞𝐾
𝑚1, … ,𝑚𝑞 Τ𝑚 ⊥

𝐾

The adversary sees ciphertexts and attempts to recover 

some “useful information” about plaintexts.

Other attack settings are important 

(e.g. adversary can ask for some encryptions, some decryptions…)



Attacks can succeed without recovering the key

𝐶1, … , 𝐶𝑞𝐾
𝑚1, … ,𝑚𝑞 Τ𝑚 ⊥

𝐾

Full break: Adversary recovers K, decrypts all ciphertexts.

However: Clever attackers may learn plaintext information from 

ciphertexts without recovering the key.

If so, the attack has succeeded / encryption algorithm is insecure.



Partial Knowledge & Recovering Partial Information

- Recovering entire messages is useful

- But recovering partial information is also be useful & dangerous

- Attacker may know large parts of plaintext already (e.g. 

formatting strings or application content).

The attacker tries to obtain something it doesn’t already know.
        M = http://site.com?password=▮▮▮▮▮▮▮▮

A lot of information is

missing here.

But can we say who this is?



Secure Encryption Goal

An attack is successful as long as it recovers any new info 

about the plaintext (caveat: typically ignore length of text).

Secure Encryption must hide all information about plaintexts

(including any possible / partial information).

• Ciphertext reveals nothing about its plaintext message



Historical Cipher: ROT13 (“Caesar cipher”)

Plaintext:     DEFGH

Key (shift):  2

Ciphertext:  FGHKL

Encrypt(K,m): shift each letter of plaintext forward by K 

positions in the alphabet (wrap from Z to A).

Plaintext:     ATTACKATDAWN

Key (shift):  13

Ciphertext:  NGGNPXNGQNJA



Historical Cipher: Substitution Cipher

Encrypt(K,m): The key K is a permutation π on {A,… Z}. 

Apply π to each character of m to create c

M:  ATTACKATDAWN

K:  π
C:  ZKKZAMZKYZGT

x π(x)

A Z

B U

C A

D Y

E R

F E

G X

H B

I D

J C

K M

L Q

M H

N T

O I

How many keys?

26! ≈ 288

9 million years to try all keys at rate of 1 trillion/sec

Q: Is this secure?



Cryptanalysis of Substitution Cipher

Insecure!

Distribution of letters in English 
text is not uniform:
• Can guess letters in a long msg 

by computing their frequency



Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads (Theoretical Encryption)

• Stream ciphers (Practical Encryption Tool #1)

• Block ciphers (Practical Encryption Tool #2)



Quick recall: Bitwise-XOR operation

We will use bit-wise XOR: 

0101

1100⨁

1001

Some Properties:
• X⨁Y = Y⨁X
• X⨁X = 000…0
• X⨁Y⨁X = Y



Cipher: One-Time Pad (OTP)

Key K: Bitstring of length L

Plaintext M: Bitstring of length L 

Encrypt(K,M): Output K⨁M
Example: 

0101 (K)

1100 (M)⨁

1001 (C)
Decrypt(K,C): Output K⨁C

Correctly decrypts because 

K⨁C = K⨁(K⨁M) = (K⨁K)⨁M = M

Q: Is the one-time pad secure? Yes*



Security of the One-Time Pad (OTP)

If key is random & used only once, then OTP provides confidentiality.

• “Proof”: if an adversary sees only one ciphertext using a random key, 

then any plaintext is equally likely, so they cannot recover any partial 

information besides the plaintext length.

Ciphertext observed:   

Possible plaintext:        

⇒ Possible key:

10111

00101

10010

1. Adversary goal: Learn partial information from plaintext

2. Adversary capability: Observe a single ciphertext

3. Adversary compute resources: Unlimited time/memory (!)

Ciphertext observed:   

Possible plaintext:        

⇒ Possible key:

(equal likelihood)

10111

11111

01000



Issues with One-Time Pad (OTP)

1. Reusing a pad is insecure

2. One-Time Pad has a long key



Issue #1: Reusing a One-Time Pad is Insecure

HELLOALICE

Pad (Key)

C1

⨁

=

PWDHAMSTER

Pad (Key)

C2

⨁

=

HELLOALICE Pad

⨁

PWDHAMSTER

=

⨁

=

Pad



Issue #1: Reusing a One-Time Pad is Insecure

GO_TO_THE 

Pad

C1

⨁

=

RIVER_AT_2

Pad

C2

⨁

=

C1 ⨁ C2

= GO_TO_THE RIVER_AT_2⨁

Has led to real attacks:

- Project Venona (1940s) attack by US on Soviet encryption

- MS Windows NT protocol PPTP

- WEP (old WiFi encryption protocol)

- Fortiguard routers! [link]

https://seclists.org/bugtraq/2019/Nov/38


Issue #2: One-Time Pad Needs a Long Key

By definition: OTP needs Key-length ≥ Plaintext-length

• Long message = long key required

• If we could’ve securely shared the key (one-time pad), 

then we could’ve just securely shared the plaintext!

• Not realistic to use in practice



Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads (Theoretical Encryption)

• Stream ciphers (Practical Encryption Tool #1)

• Block ciphers (Practical Encryption Tool #2)



Stream Ciphers: Simulating OTPs

Key Idea: Given a random key, K, create an extremely large pseudo-

random string that can be used as a one-time pad

• Cryptographic functions called pseudo-random number 

generators (PRNGs) that can do this



Tool to address key-length of OTP: PRNGs

G = PRNG that takes one (smaller) input and produces a very long 

bit-string as output (deterministic per input).

1100..11

11111010001000111010100101000101100100111100…

G

⨁ DONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDON

Use G(key) as the one-time pad.

• Can now encrypt messages much longer than the key.

Typically 16 or 32 bytes.
Usually very, very large

(petabytes if needed)
Key (Seed) k:

G(k):



Stream Cipher Security Goal (Sketch)

Security goal: When k is random and unknown, G(k) should “look” random.

… even to an adversary spending a lot of computation.

Much stronger requirement that “passes statistical tests”.

Brute force attack: Given y=G(k), try all possible k and see if you get the string y.

Clarified goal: When k is random and unknown, G(k) should “look” random to 

anyone who can’t run a brute force attack.

(key length = 256-bits is considered strong now)



Practical Stream Ciphers (Not covered in this class)

RC4 (1987): “Ron’s Cipher #4”. Mostly retired by 2016 (insecure).

ChaCha20 (2007): Successfully deployed replacement.

Supports nonces.



Sending Multiple Messages w/ Stream Ciphers: Pad Reuse?

m1         

⨁ G(k) 

k

k

ciphertext 

…

m2         

⨁

ciphertext 

G(k) 

Uh oh… two-time pad!



Addressing pad reuse: Stream cipher with a nonce

- “nonce” = “number once”. 

- Usually denoted IV = “initialization vector”

Stream cipher with a nonce: Algorithm G that takes two 

inputs and produces a very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

1100..11

Key/Seed k:Nonce IV:

G(IV,k):

Security: When k is random and unknown, G(IV,k) should “look” random 

and independent for each value of IV.



Solution: Stream cipher with a nonce

m1         

⨁ G(IV,k) 

k

k

ciphertext 

IV←0

IV 

IV←IV+1

…

m2         

⨁

ciphertext 

G(IV,k) 

IV 

- However: if nonce repeats, then pad repeats -> two-time pad!



Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV 

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)

- IV is often set to zero on power cycle

Solutions: (WPA2 replacement)

- Larger IV space, or force rekeying more often

- Set IV to combination of packet number, address, etc



Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV 

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)

- Often set to zero on reset

Solutions: (WPA2 replacement)

- Larger IV space, or force rekeying more often

- Set IV to combination of packet number, address, etc



Stream Ciphers w/ Nonces

1. Reusing a pad is insecure

2. One-Time Pad needs a long key

Use unique nonces

Use stream cipher with short key

Stream ciphers use PRNG’s & nonces to make 

secure one-time pads practical.



Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads (Theoretical Encryption)

• Stream ciphers (Practical Encryption Tool #1)

• Block ciphers (Practical Encryption Tool #2)



Block Ciphers (AES) : Another Tool for Secure Encryption

Blockciphers: common crypto building block for solving many problems.

Informal definition: A blockcipher is essentially a substitution 

cipher with a very large alphabet and a very compact key. 

Typical parameters: 

Alphabet = {0,1}128 (16 bytes input -> 16 bytes output)

Key length = 16 bytes (2128 possible key values)

Can build many higher-level protocols from a good blockcipher.



Rijmen and Daemen

- Block length n = 128

- Key length k = 128,192,256

- 10 rounds of “substitution-

permutation network”

- Break msg M into blocks and 

encrypt each block

Advanced Encryption Standard (AES)

M

⨁

P1

K1

P2

K2

P3

⨁

- NIST ran competition to develop standard 

encryption algorithms in 1997

- Several submissions, Rijndael (AES)

chosen and standardized as the secure 

block cipher design



Blockcipher Security (Confidentiality)

- AES is thought to be a good “Pseudorandom Permutation” (PRP)

AESK()

x

AESK(x)
rand()

x

rand(x)
Vs

- Outputs all look random and independent for different inputs, 

even when inputs are maliciously controlled.

- Formal definition in CS284.



Example - AES Input/Outputs

-K1: 9500924ad9d1b7a28391887d95fcfbd5

-K2: 9500924ad9d1b7a28391887d95fcfbd6

AESK1(00..00)=8b805ddb39f3eee72b43bf95c9ce410f

AESK1(00..01)=9918e60f2a20b1b81674646dceebdb51

AESK2(00..00)=1303270be48ce8b8dd8316fdba38eb04

AESK2(00..01)=96ba598a55873ec1286af646073e36f6

Keys and inputs are 16 bytes = 128 bits

AES is now the gold standard block-cipher

- Very fast; Intel & AMD CPU chips have built-in AES instructions



Block Cipher Modes

AES only encrypts 16 bytes at a time

- Question: What do I do if I want to encrypt more than 16 bytes of data?

- Answer: AES has different modes of operation

- Some common modes: ECB, CTR, CBC, GCM

- ECB : do not use – insecure!!

- CTR & CBC : confidentiality, but not integrity

- GCM: authenticated encryption (next week)



ECB Mode: Insecure! Warning: Broken

AESK()

ECB = “Electronic Code Book”

M1

C1

AESK()

M2

C2

AESK()

Mt

Ct

. . . 

AES-ECBk(M)

- Split M into blocks M1, M2, …, Mt 
// all blocks except Mt are 16 bytes

- Pad last block, Mt, up to 16 bytes

- For i=1…t:

-Ci ← AESk(Mi)

- Return  C1 ,…, Ct

Intuitively:

Break message up into 16-byte 
chunks and encrypt each block 
with AES.



ECB Mode: Insecure! Warning: Broken

AESK()

ECB = “Electronic Code Book”

M1

C1

AESK()

M2

C2

AESK()

Mt

Ct

. . . 

Insecure!

Deterministic Encryption:
- The same input (plaintext) always 
results in the same output (ciphertext).

If any message block repeats, 
ciphertexts will be identical!

AES-ECBk(M)

- Split M into blocks M1, M2, …, Mt 
// all blocks except Mt are 16 bytes

- Pad last block, Mt, up to 16 bytes

- For i=1…t:

-Ci ← AESk(Mi)

- Return  C1 ,…, Ct



Example: The ECB Penguin Warning: Broken

- Treat pixel values as one long string & encrypt the string

Plaintext ECB Ciphertext



AES-CTR Mode: Secure Confidentiality

- CTR = “Counter Mode”

- Idea: Build a nonce-based stream cipher from AES

AES-CTRk(IV,M)

- Split M into blocks M1, M2, …, Mt 
// all blocks except Mt are 16 bytes

- For i=1…t:

-Ci ← Mi⊕AESk(IV+i)

- Return IV, C1 ,…, Ct

AESK()

IV

C1

AESK()

IV+1

. . . 

IV+2

AESK()

IV+t

IV

M1

C2

M2

Ct

Mt

IV chosen randomly & 

transmitted unencrypted.

CTR mode creates “One-Time 

Pads” for each block, since 

AES output looks random for 

different inputs.



Penguin Sanity Check

Plaintext ECB Ciphertext CTR Ciphertext

Looks random



Encryption Summary

- Security Goal (Confidentiality): given encrypted ciphertexts, the attacker can learn 
nothing about their plaintext contents

- One-time pads provide theoretically strong security, but are impractical

- Stream ciphers & Block ciphers can achieve practical + secure confidentiality

- Block cipher modes matter for encryption security

- AES-ECB (naïve block cipher) is INSECURE

- Modes like AES-CTR and AES-CBC (not discussed) provide secure confidentiality
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