
Grant Ho

Cryptography Part 2
CMSC 23200, Spring 2025, Lecture 5

University of Chicago, 04/08/2025

Logistics

Assignment 2 (Buffer Overflow): Due Thursday, 11:59pm

• For Assignment 2 only, you will use a different course VM
read the assignment instructions for details

• Test login for the new VM by end of tonight

Discussion Section #2: tomorrow (Wed) @ assigned section times

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Block Cipher & Encryption Wrap-up

• Integrity: MACs and Hash functions

• Authenticated Encryption

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption

• Digital Signatures

Block Ciphers: Symmetric Encryption Tool

• Block Ciphers (AES) act like Pseudo-random Permutations (PRP’s)

• If the attacker doesn’t know the secret key (K), then:

AES(K, x) = Random-looking string for different inputs (x)

• AES only encrypts 16 bytes at a time

• To encrypt more than 16 bytes, AES has different modes of operation that

break up & encrypt a message as a series of 16-byte blocks

• ECB : do not use – insecure!!

• CTR & CBC : confidentiality, but not integrity

• GCM: authenticated encryption

ECB Mode: Insecure! Warning: Broken

AESK()

ECB = “Electronic Code Book”

M1

C1

AESK()

M2

C2

AESK()

Mt

Ct

. . .

AES-ECBk(M)

- Split M into blocks M1, M2, …, Mt
// all blocks except Mt are 16 bytes

- Pad last block, Mt, up to 16 bytes

- For i=1…t:

-Ci ← AESk(Mi)

- Return C1 ,…, Ct

Intuitively:
• Break message up into 16-

byte chunks and encrypt
each block with AES.

Insecure!
• Encrypting the same

plaintext message multiple
times always produces the
same ciphertext

Example: The ECB Penguin Warning: Broken

Treat pixel values as one long string & encrypt the string

Plaintext ECB Ciphertext

AES-CTR Mode: Secure Confidentiality

CTR = “Counter Mode”

- Idea: Build a stream cipher using AES & nonces

AES-CTRk(IV,M)

- Split M into blocks M1, M2, …, Mt
// all blocks except Mt are 16 bytes

- IV ← random value
- For i=1…t:

-Ci ← Mi⊕AESk(IV+i)

- Return IV, C1 ,…, Ct

AESK()

IV

C1

AESK()

IV+1

. . .

IV+2

AESK()

IV+t

IV

M1

C2

M2

Ct

Mt

CTR mode creates “One-Time Pads”

for each block, since AES output

looks random for different inputs

(nonces).

IV (nonce) chosen randomly &

transmitted unencrypted.

Penguin Sanity Check

Plaintext ECB Ciphertext CTR Ciphertext

Looks random

Encryption Summary

• Security Goal (Confidentiality): given encrypted ciphertexts, the attacker can learn
nothing new about their plaintext contents

• One-time pads = strong security if pad (key) is never reused, but are impractical

• Stream ciphers & Block ciphers can achieve practical + secure confidentiality

• Block cipher modes matter for encryption security

• AES-ECB (naïve block cipher) is INSECURE

• Modes like AES-CTR and AES-CBC (not discussed) provide confidentiality

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Block Cipher & Encryption Wrap-up

• Integrity: MACs and Hash functions

• Authenticated Encryption

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption

• Digital Signatures

Integrity: Message Authentication Codes (MACs)

• Encryption provides confidentiality:
a passive attacker can’t learn anything about the data
we’re storing or using

• Integrity: an (active) attacker cannot tamper with the data
in an undetectable manner

• i.e., allows user to check if the data they received is
exactly what was sent or if it has been modified

Integrity: New Threat Model (Active Attacker)

• Threat model: Active attacker that can tamper with
communication

• Attacker not only sees all ciphertexts, but can also actively
modify ciphertexts during transmission, inject their own data as
additional “ciphertexts”, reorder or delete ciphertexts

• Often known as a Man-in-the-Middle (MITM) attacker

𝐶1, … , 𝐶𝑞 𝐶3
′ , … , 𝐶1

OTP & Stream Ciphers Do Not Provide Integrity

PAYALICE$1

Pad

C

⨁

=

=

C’

⨁
000ALICE00

000DAVID00

⨁

Decrypt(Pad, C’) = PAYDAVID$1

Stream ciphers do not give integrity

C = b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e446a782871c2d

M = please pay ben 20 bucks

C’= b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e546a782871c2d

M’ = please pay ben 21 bucks

Encryption alone does not provide integrity

(fundamentally not designed to)

Providing Integrity: Message Authentication Code

Idea: Append a special tag to each message that

(1) validates the message content (different msg = different tag)

and (2) can only be computed if a user knows the secret key K

Providing Integrity: Message Authentication Code

A message authentication code (MAC) is an algorithm that

takes as input a key and a message, and outputs an

“unpredictable” tag.

MACK()D

K

T

T←MACK(D)

D,T

K
K

Check:

T=MACK(D)?

D will usually be a ciphertext, but is often called a “message”.

MAC Security Goal: Unforgeability

T←MACK(D)
D,T D’,T’

“ACCEPT”

or “ERROR”

MAC satisfies unforgeability if it is infeasible for Adversary to
fool Bob into accepting D’ and T’as a valid (msg, MAC) pair, for

a D’that has not been previously seen

T’=MACK(D’)?

Alice Bob

Unforgeability: Attacker cannot create T’ for any new D’.

• MACs do NOT need to provide any confidentiality (no encryption shown here)

T = 827851dc9cf0f92ddcdc552572ffd8bc

D = please pay ben 20 bucks

D’= please pay ben 21 bucks

D,T D’,T’

T’= baeaf48a891de588ce588f8535ef58b6

MAC Security Goal: Unforgeability

MACs In Practice: Use HMAC or Poly1305-AES

- More precisely: Use HMAC-SHA2.

- Other, less-good option: AES-CBC-MAC (bug-prone)

Building Block: Hash Functions

Definition: A hash function is a deterministic function H(…)

that maps arbitrary strings to fixed-length outputs. HM H(M)

Properties of a secure hash function:

1. One-way function: given H(M), can’t find M

2. Collision resistance: can’t find M != M’ such that H(M) = H(M’)

3. Second-preimage resistance: given H(M), can’t find M’ s.t. H(M’) = H(M)

- Note: Very different from hashes used in data structures!

Why are hash collisions bad?

The binary

should hash to
3477a3498234f

Hashes to
3477a3498234f,

so let’s install!
MD5()=3477a3498234f

MD5()=3477a3498234f

Practical Hash Functions

Name Year Output Len (bits) Broken?

MD5 1993 128 Super-duper broken

SHA-1 1994 160 Yes

SHA-2 (SHA-256) 1999 256 No

SHA-2 (SHA-512) 2009 512 No

SHA-3 2019 >=224 No

Hash Functions are not MACs

Both functions map long inputs to short outputs… but hash func’s do not use a key:

Attackers can compute hash of any message they want (not unforgeable)

HM H(M) MACK()M

K

T

Intuition: a MAC is like a hash function,

but that only someone w/ the key can compute.

Building MACs from Hash Functions

Goal: Build a secure MAC out of a good hash function.

- Totally insecure if H = MD5, SHA1, SHA-256, SHA-512

Construction: MAC(K, D) = H(K || D) Warning: Broken

NEVER Design your own crypto algorithms, always use standard libraries!

Secure MAC: Use standard HMAC function

MAC(K, D) = H(K ⨁ opad || H(K ⨁ ipad || D))

Length Extension Attack on Insecure MACs

Construction: MAC(K, D) = H(K || D) Warning: Broken

D,T D’,T’

Adversary goal: Find new message D’ and a valid tag T’ for D’

In other words: Given T=H(K || D), find T’=H(K || D’) without knowing K.

• Attack: Can craft D’ = D || XYZ, with some string XYZ that consists of

(1) substr that attacker can freely choose and (2) substr to make attack work

In Assignment 3: Break this construction!

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Block Cipher & Encryption Wrap-up

• Integrity: MACs and Hash functions

• Authenticated Encryption

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption

• Digital Signatures

Four Cryptography Problems / Tools

Confidentiality Authenticity/Integrity

Yes (“Symmetric”) Symmetric Encryption
Message Authentication

Code (MAC)

No (“Asymmetric”)

Security

Goal

Pre-shared

key?

Security: Ciphertext
reveals nothing
about plaintext
message

Security: Tag for new
msg is impossible to
compute without
secret key

Authenticated Encryption

Authenticated Encryption algorithms provide both

confidentiality and integrity.

- One approach: Built using a good stream cipher and a MAC.

- Ex: Salsa20 with HMAC-SHA2

- Best solution: Use ready-made Authenticated Encryption

- Ex: AES-GCM is the standard (specific block cipher mode)

Building Authenticated Encryption

EncK1() MACK2()M
C

K1 K2

T

C T

EncryptK1,K2(M)

Output:

(C,T)

MACK2()

K2

T’=T?

DecryptK1,K2(C,T)

Output:

M’if T’=T

⊥ if T’≠T

C
DecK1()

K1

C M’T’

Encrypt message, then compute MAC on the ciphertext

5 MINUTE BREAK

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Block Cipher & Encryption Wrap-up

• Integrity: MACs and Hash functions

• Authenticated Encryption

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption

• Digital Signatures

Motivation: If two people do not have a pre-shared secret key,

can they send private messages in the presence of an attacker?

Why do we need Public-Key Cryptography?

Confidentiality
Authenticity/

Integrity

Yes (“Symmetric”)
Symmetric
Encryption

Message
Authentication

Code (MAC)

No (“Asymmetric”)
Public-Key
Encryption

Digital Signatures

Security

Goal

Pre-shared

key?

<some bits>

M?

Message M Receive M

Formally impossible (in some sense):

No difference between receiver and adversary.

Why do we need Public-Key Cryptography?

Motivation: If two people do not have a pre-shared secret key,

can they send private messages in the presence of an attacker?

Why do we need Public-Key Cryptography?

Rivest, Shamir, Adleman

in 1978: Yes, differently!

Turing Award, 2002

Diffie and Hellman

in 1976: Yes!

Turing Award, 2015

Cocks, Ellis, Williamson

in 1969, at GCHQ:

Yes…

Motivation: If two people do not have a pre-shared secret key,

can they send private messages in the presence of an attacker?

A public-key encryption scheme consists of three algorithms:

KeyGen, Encrypt, and Decrypt

Public-Key Encryption (Confidentiality)

KeyGen

PK,SK

KeyGen: Outputs two keys.

PK published openly, and

SK kept secret.

Encrypt

C

PK

M

Decrypt

M

SK

C

Encrypt(PK, M):

Uses PK and M to produce a

ciphertext C.

Decrypt(SK, C):

Uses SK and C to recover M.

Public-Key Encryption

PK=public key
known to everyone

SK=secret key
known by Receiver only

PK

PK

SK

M C = Enc(PK,M) M

C

Goal: Passive Attacker, knows algorithm implementations (Enc, Dec) and PK,
but the ciphertext C reveals nothing about the plaintext message M
• Attacker might also have partial knowledge, e.g., other (M*, C*) pairs
• Encryption (symmetric too) not even allowed to reveal if a message repeated!

Public Key Encryption Schemes: RSA

Key Generation:

- Pick 𝑝 and 𝑞 be large random prime numbers (around 21024)

- Compute 𝑁 ← 𝑝𝑞
- Set 𝑒 to a default value (𝑒 = 3 and 𝑒 = 65537 are common)

- Compute 𝑑 such that 𝑒𝑑 = 1𝑚𝑜𝑑(𝑝 − 1)(𝑞 − 1)
- Output:

- Public key 𝑝𝑘 = (𝑁, 𝑒)
- Secret key 𝑠𝑘 = (𝑁, 𝑑)

Example:

- 𝑝 = 5, 𝑞 = 11, 𝑁 = 55
- 𝑒 = 3, 𝑑 = 27

Plain RSA Encryption

𝑃𝐾 = (𝑁, 𝑒) 𝑆𝐾 = (𝑁, 𝑑) 𝑁 = 𝑝𝑞, 𝑒𝑑 = 1𝑚𝑜𝑑(𝜙(𝑁))where

Encryption & Decryption:

Enc((𝑁, 𝑒), 𝑥) = 𝑥𝑒𝑚𝑜𝑑𝑁

Dec((𝑁, 𝑑), 𝑦) = 𝑦𝑑𝑚𝑜𝑑𝑁

Warning: BrokenNever use directly as encryption!

Using number theory from CMSC 27100, can show:

Dec(Enc((𝑁, 𝑒), 𝑥)) = (𝑥𝑒)𝑑 = 𝑥 𝑚𝑜𝑑𝑁

Note: Taking modular
roots is believed to be
computational hard

Bit-length of N Year

400 1993

478 1994

515 1999

768 2009

795 2019

Best Known Attack on RSA: Factoring
- Factoring N allows recovery of secret key… can compute 𝜙 𝑁 = (𝑝 − 1)(𝑞 − 1)

- Challenges posted publicly by RSA Laboratories

- Recommended bit-length today: 2048 or greater

- Note that fast factoring algorithms force such a large key.

- 512-bit N defeats naive factoring

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Block Cipher & Encryption Wrap-up

• Integrity: MACs and Hash functions

• Authenticated Encryption

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption

• Digital Signatures

A digital signature scheme consists of three algorithms

KeyGen, Sign, and Verify

Digital Signatures Schemes (Integrity & Auth)

KeyGen

PK,SK

Sign

σ

SK

M

Verify

Accept or Reject

PK

M,σ

KeyGen: Outputs two keys.

PK published openly, and

SK kept secret.

Sign: Uses SK to produce a

“signature” σ on M.

Verify: Uses PK to check if

signature σ is valid for M.

Digital Signature Security Goal: Unforgeability

Scheme satisfies unforgeability if an Adversary (who knows PK)

cannot to fool Bob into accepting (M’, σ’) that Alice has not sent.

PK

σ←Sign(SK,M)

M, σ M’, σ’

ACCEPT/

REJECT

Verify(PK,σ’,M’)?
M

PKSK

𝑃𝐾 = (𝑁, 𝑒) 𝑆𝐾 = (𝑁, 𝑑) 𝑁 = 𝑝𝑞, 𝑒𝑑 = 1𝑚𝑜𝑑𝜙(𝑁)where

Sign 𝑁, 𝑑 , 𝑀 = 𝑀𝑑𝑚𝑜𝑑 𝑁

Verify 𝑁, 𝑒 , 𝑀, 𝜎 : 𝜎𝑒 = 𝑀 𝑚𝑜𝑑 𝑁?

“Plain” RSA Signature with No Encoding
Broken

𝑒 = 3 is common for fast verification.

KeyGen is same as regular RSA:

Sign 𝑁, 𝑑 , 𝑀 = 𝑀𝑑 𝑚𝑜𝑑 𝑁 Verify 𝑁, 3 , 𝑀, 𝜎 : 𝜎3 = 𝑀 𝑚𝑜𝑑 𝑁?

“Plain” RSA Weaknesses Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Assume e=3.

Trivial Attack: Easy to forge signature for M’=1: Take σ’=1:

(σ’3)=13=1=M’ mod N

Cube-M weakness: For any M’ that is a perfect cube, it is easy to forge.

Attack: Signature σ’=
3

𝑀′ , i.e. the usual cube root of M’

Example: To forge on M’=8, which is a perfect cube, set σ’=2.

(σ’)3=23=8=M’ mod N

(Intuition: If cubing does not “wrap modulo N”, then it is easy to un-do.)

Sign((𝑁, 𝑑), 𝑀) = 𝑀𝑑𝑚𝑜𝑑𝑁 Verify((𝑁, 3), 𝑀, 𝜎): 𝜎3 = 𝑀𝑚𝑜𝑑𝑁?

More “Plain” RSA Weaknesses Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Assume e=3.

Malleability weakness: If σ is a valid signature for M, then it is easy

to forge a signature for new msg M’=(8M mod N),

Given (M,σ), compute forgery (M’,σ’) as

M’= (8*M mod N), and σ’=(2*σ mod N)

This is a valid pair because: Verify((N,3), M’,σ’) checks:

(σ’)3=(2*σ mod N)3 = ... = 8*M mod N = M’ mod N

Sign((𝑁, 𝑑), 𝑀) = 𝑀𝑑𝑚𝑜𝑑𝑁 Verify((𝑁, 3), 𝑀, 𝜎): 𝜎3 = 𝑀𝑚𝑜𝑑𝑁?

More “Plain” RSA Weaknesses Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Assume e=3.

Malleability weakness: If σ is a valid signature for M, then it is easy

to forge a signature for new msg M’=(8M mod N),

Given (M,σ), compute forgery (M’,σ’) as

M’= (8*M mod N), and σ’=(2*σ mod N)

This is a valid pair because: Verify((N,3), M’,σ’) checks:

(σ’)3=(2*σ mod N)3 = (23*σ3 mod N) = ... = 8*M mod N = M’ mod N

Sign((𝑁, 𝑑), 𝑀) = 𝑀𝑑𝑚𝑜𝑑𝑁 Verify((𝑁, 3), 𝑀, 𝜎): 𝜎3 = 𝑀𝑚𝑜𝑑𝑁?

More “Plain” RSA Weaknesses Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Assume e=3.

Malleability weakness: If σ is a valid signature for M, then it is easy

to forge a signature for new msg M’=(8M mod N),

Given (M,σ), compute forgery (M’,σ’) as

M’= (8*M mod N), and σ’=(2*σ mod N)

This is a valid pair because: Verify((N,3), M’,σ’) checks:

(σ’)3=(2*σ mod N)3 = (23*σ3 mod N) = (23*M mod N) = 8*M mod N = M’ mod N

σ3=M mod N because σ is valid sig. on M

𝑃𝐾 = (𝑁, 𝑒) 𝑆𝐾 = (𝑁, 𝑑) 𝑁 = 𝑝𝑞, 𝑒𝑑 = 1𝑚𝑜𝑑𝜙(𝑁)where

Sign((𝑁, 𝑑), 𝑀) = (encode(𝑀))𝑑𝑚𝑜𝑑𝑁

Verify 𝑁, 𝑒 , 𝑀, 𝜎 : 𝜎𝑒 = encode 𝑀 𝑚𝑜𝑑𝑁?

Secure RSA Signatures with Encodings

encode maps bit strings to numbers between 0 and N

Encoding must be chosen

with extreme care.

Broken

Authentication via Digital Signatures

PK,SK

Hey it’s me, your user Server

- “Challenge – Response” Protocol

- This and similar ideas used in SSH, TLS, etc.

Blase’s PK

Blase

σ = Sign(SK,r)

Pick random

bytes r
Really? Prove it by signing r

Verify(PK,r,σ)?

Digital Signature Summary

As with all crypto schemes:

do not build your own signature schemes!

- Plain RSA signatures are very broken!

- Several secure RSA options in widely deployed libraries available:

- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented correctly

- Full-Domain Hash and PSS should be preferred

- There are also other signature schemes that aren’t based on RSA (e.g., DSA/ECDSA)

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Block Cipher & Encryption Wrap-up

• Integrity: MACs and Hash functions

• Authenticated Encryption

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption

• Digital Signatures

Hybrid Encryption: Building secure channels from scratch*

Why not use asymmetric crypto for everything?

Answer

Symmetric key
crypto algorithms
are MUCH faster

Confidentiality Authenticity/Integrity

Yes (“Symmetric”) Symmetric Encryption
Message Authentication

Code (MAC)

No (“Asymmetric”) Public-Key Encryption Digital Signatures

Security

Goal

Pre-shared

key?

Hybrid Encryption: Real-world Secure Channels

Strategy:

1. Alice & Bob use a key exchange protocol to share their secret key(s)

2. Alice & Bob then use symmetric authenticated encryption (fast) for all

their msg’s

Key Exchange

AES-GCM(K,M1)

AES-GCM(K,M2)

AES-GCM(K,M3)

…

Key Exchange Protocols

Options

1. Use public-key crypto algorithms (RSA encryption & signatures)

2. Use dedicated key exchange algorithms (Diffie-Hellman):

Faster & recommended approach (e.g., TLS, SSH)

Key Exchange

AES-GCM(K,M1)

AES-GCM(K,M2)

AES-GCM(K,M3)

…

The End

	Slide 1: Cryptography Part 2 CMSC 23200, Spring 2025, Lecture 5
	Slide 2: Logistics
	Slide 3: Outline: Crypto Part 2
	Slide 4: Block Ciphers: Symmetric Encryption Tool
	Slide 5: ECB Mode: Insecure!
	Slide 6: Example: The ECB Penguin
	Slide 7: AES-CTR Mode: Secure Confidentiality
	Slide 8: Penguin Sanity Check
	Slide 9: Encryption Summary
	Slide 10: Outline: Crypto Part 2
	Slide 11: Integrity: Message Authentication Codes (MACs)
	Slide 12: Integrity: New Threat Model (Active Attacker)
	Slide 13: OTP & Stream Ciphers Do Not Provide Integrity
	Slide 14: Stream ciphers do not give integrity
	Slide 15: Providing Integrity: Message Authentication Code
	Slide 16: Providing Integrity: Message Authentication Code
	Slide 17: MAC Security Goal: Unforgeability
	Slide 18
	Slide 19: MACs In Practice: Use HMAC or Poly1305-AES
	Slide 21: Building Block: Hash Functions
	Slide 22: Why are hash collisions bad?
	Slide 23: Practical Hash Functions
	Slide 24: Hash Functions are not MACs
	Slide 25: Building MACs from Hash Functions
	Slide 26: Length Extension Attack on Insecure MACs
	Slide 27: Outline: Crypto Part 2
	Slide 28: Four Cryptography Problems / Tools
	Slide 29: Authenticated Encryption
	Slide 30: Building Authenticated Encryption
	Slide 31: 5 MINUTE BREAK
	Slide 32: Outline: Crypto Part 2
	Slide 33
	Slide 34
	Slide 35: Why do we need Public-Key Cryptography?
	Slide 36: Public-Key Encryption (Confidentiality)
	Slide 37: Public-Key Encryption
	Slide 38: Public Key Encryption Schemes: RSA
	Slide 39: Plain RSA Encryption
	Slide 40: Best Known Attack on RSA: Factoring
	Slide 41: Outline: Crypto Part 2
	Slide 42: Digital Signatures Schemes (Integrity & Auth)
	Slide 43: Digital Signature Security Goal: Unforgeability
	Slide 44: “Plain” RSA Signature with No Encoding
	Slide 45: “Plain” RSA Weaknesses
	Slide 46: More “Plain” RSA Weaknesses
	Slide 47: More “Plain” RSA Weaknesses
	Slide 48: More “Plain” RSA Weaknesses
	Slide 50: Secure RSA Signatures with Encodings
	Slide 51: Authentication via Digital Signatures
	Slide 52: Digital Signature Summary
	Slide 53: Outline: Crypto Part 2
	Slide 54: Why not use asymmetric crypto for everything?
	Slide 55: Hybrid Encryption: Real-world Secure Channels
	Slide 56: Key Exchange Protocols
	Slide 59: The End

