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Foreword

Stuart Kurtz wrote this book for Honors Introduction to Computer Science I (CMSC 16100), taught at the University
of Chicago from 2009 to 2021. It was my privilege to teach this course alongside Stu for seven of these years, and my
pleasure to compile his work into this informal volume. The subject at hand is introductory Haskell programming
(a quarter of the vast topic, let’s say), mostly covered in a 10-week term (a “quarter” at UChicago).

This book is dense, demanding, and—ultimately—rewarding. For motivated readers without programming expe-
rience, it may serve as an inspirational foundation for prolonged study. For those with prior experience, it offers
a mind-bending perspective on program design—more likely than not, radically different than familiar notions of
coding. In either case, I urge you to curl up with a pen, some paper, and perhaps a computer, dedicate ample time
to read and think, and enjoy!

Ravi Chugh
August 2022
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Chapter 1

Introduction

Getting Started1

You should set up the Glasgow Haskell system. The easy way is to follow the platform specific instructions on the
Haskell Platform page. Note that you many need to add certain directories to your PATH environment variable.

Haskell

Haskell is a strongly-typed, lazy, pure, functional language. We’ll get around to defining these terms in due course,
but suffice it to say that this is not your grandfather’s FORTRAN, nor your father’s C, nor even the Java or C++ you
might have learned in High School. In traditional procedural programming language, programs are compiled (i.e.,
translated) into a sequence of instructions for manipulating memory; whereas in functional languages, computation
can be understood as the mathematical process of disciplined substitution. Programming in Haskell often feels like
“programming with mathematics.”

Our decision to teach Haskell may seem peculiar, idiosyncratic, and perhaps even iconoclastic. Students who favor
languages that are more familiar to them, and more important in the here-and-now commercially, often feel that
way. We don’t want to get into a debate over our choices today, but instead will lay out our priorities, and ask you
to suspend disbelief. A useful metaphor, drawn from hockey (this is a hockey town), is “skating to where the puck
is going to be.” Time and again, we have seen features, concepts, and even idioms of Haskell taken up by more
traditional languages. Our goal is to prepare you for the future, and Haskell’s the best vehicle we know for doing
so.
1RC:Unless otherwise (foot)noted, the material in this book was up-to-date as of 2021. Some things—such as these installation instructions—may
have since changed. (See https://www.haskell.org/ for the latest installation instructions.)
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The Past

The past is never dead. It’s not even past.
William Faulkner

Early attempts to formalize mathematics ran into a variety of paradoxes, i.e., self-contradictory statements. One
such was Russell’s Paradox, in which Bertrand Russell defined the set

R = {x | x 6∈ x},

using Frege’s axiom of comprehension, which allows one to create a set out of the sets that satisfy some predicate.
The paradox comes from asking whether or not R ∈ R. This reduces, by the definition of R, to

R ∈ R ⇐⇒ R 6∈ R,

a self-contradictory statement, a paradox.

There were several distinct approaches developed used to avoid Russell’s paradox.

The most influential approach was Ernst Zermelo’s, in which comprehensions defined classes rather than sets, and
where the intersection of a class with a set is also a set. As only sets can be elements of classes or sets, and one can
conclude that R is a proper class, i.e., a class which is not a set, and thereby resolve the contradiction.

Another approach was Russell-Whitehead’s theory of ramified types, which required assigning an integer to each
variable used in forming a statement, e.g., we’ll use the notation x :: i to mean that the variable x is given the type
(integer) i. These types had to be used consistently, i.e., if we used both x :: i and x :: j in an expression, then we
must have i = j. They then restricted the use of ∈ to be strictly monotonic in type, i.e., (x :: i) ∈ (y :: j) could
be formed only if i < j. This resolves the paradox by making the comprehension (x :: i) ∈ (x :: i) at the core of
Russell’s paradox syntactically invalid, as no integer i can be chosen to meet the constraint i < i.

A first impression is that the theory of ramified types is ad hoc; it gets around Russell’s paradox by a seeming “magic
bullet” that allows us to ignore it. But at a deeper and more sympathetic level, the ramified theory of types prevents
circularities in the use of ∈, by insisting on definitions in which the use of ∈ is “well-founded in type.”

Computers and Programming

Computers are complex devices. We use them to write papers, run spreadsheets, store and manipulate photos and
videos, to play games, etc. And their design and construction is likewise complex. Yet at their mathematical core,
computers rest on very simple ideas, e.g., a bit is logical element that can be in one of two distinct states (on/off,
0/1, true/false). The processor, in a step-wise fashion, changes the value contained in some bits in a lawful way
based on the values contained in other bits. Bits are to computers as sets are to mathematics—the foundation upon
which all other representations are built.

Types enter programming as means of interpretations of various collections of bits, e.g., these bits represent an ac-
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count balance, those bits represent a photograph, those other bits represent a telephone number. Programming often
involves building representations of new types out of the representations of old types, and the defining manipulations
of values of those new types in terms of manipulations of the values of old types.

Traditional Programming Languages

In traditional compiled languages like C, C++, and Java, we declare types for every name used in a program. The
compiler infers the type of every expression, in a strict bottom-up way (the type of an expression is defined by the
types of its constituent parts). In doing so, the compiler enforces the consistent use of these names, e.g., typically
you can’t add an integer to a floating-point number, but must first convert one to the type of another.

A problem, especially with older languages, is that their type systems were inflexible, which often meant that code
either had to be duplicated to work at different types (and duplicated code is a bad thing), or that various nefarious
tricks had to be used to get the type system to accept code that couldn’t be typed, mooting the point of having a
type system at all.

Figure 1.1: Reproduced from https://xkcd.com/1537/ without change. (CC BY-NC 2.5)
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Scripting Languages

There are three great virtues of a programmer: laziness, impatience, and hubris.
Larry Wall

For doing quick-and-dirty programming, traditional programming languages often offend programmers who exhibit
Wall’s three great virtues. The discipline of declaring types for all names offends their laziness. The time required
for compilation offends their sense of impatience. And the idea that their use of the language is constrained by the
compiler’s need to ensure consistent usage offends their hubris. And so, scripting languages like Perl and Python
eschew a static type-discipline, in favor of dynamic runtime type-checking, and interpretation (which typically has
shorter latencies, and facilitates dynamic loading) over compilation.

To make this work, the values stored in memory have to encode their type, and these types have to be checked at run
time to select appropriate implementations of various operations, or to produce an error if no such implementation
exists. To facilitate rapid development, these languages will often convert types “on the fly” as needed to make sense
of a programming construct, e.g., if you try to add an integer to a floating point number in Python, the integer will
first be converted into a floating-point number, and then the two floating point numbers will be added. A problem
is that the specific coercions may not be expected or desired, cf., the adjacent image courtesy of xkcd.com.

But this happens automatically, and so panders to the laziness and impatience of the programmer, and sometimes
spares them the consequences of their hubris, when the latter is ill-founded. The problem with this is the weasel
word “sometimes.”

Scripting programmers are confident in their own ability to reason about the actual types that will be encountered in
these at runtime, and so are confident that operations will only be called with appropriate and compatible arguments.
The right word for this is hubris. In practice, many bugs in scripting language programs are revealed through runtime
type incompatibilities, which exposes that their programmer’s confidence has been misplaced. Moreover, code often
requires debugging, and is subsequently maintained, often not by the original programmer. Code is fragile, in the
sense that small changes can invalidate these chains of reasoning about type usage, and those chains of reasoning are
often not available when code is being reworked.

Sooner or later, an end user encounters a runtime error when the code tries to multiply 'dirt' times 'curtains',
and no one can figure out how something quite so absurd came to be.

Haskell’s Approach to Types

Computers should think, and people should play.
Carl Smith

Haskell uses a strong, flexible type system. Moreover, it makes widespread use of powerful type inference algorithms
that moot the need for most type declarations. This isn’t to say that Haskell programmers don’t include type
declarations, but rather that the declarations tend to serve a different function: they’re typically a compiler verified
“comment,” comprising a contract about name use.

Let’s consider some examples, from within the ghci Haskell interpreter:
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$ ghci
GHCi, version 8.10.5: https://www.haskell.org/ghc/ :? for help
Prelude> 1 :: Integer
1

This is pretty easy stuff. We’re asking the interpreter to evaluate the expression 1, and telling it that the result should
be of type Integer. [Note that the Integer type is infinite-precision.] Haskell does not actually need the type
annotation, cf.,

Prelude> 1
1

This is all very simple. We can see a subtle distinction if we ask Haskell to evaluate 1, but telling it that the result
should be a floating-point number:

Prelude> 1 :: Double
1.0

The 1 is a numeric literal, i.e., a bit of syntax that can be interpreted as a number, and that Double is the typical
type used to represent floating-point values. Moreover, when Haskell prints a Double, it always includes a decimal
point with at least one fractional digit.

If we look more deeply still, we can ask Haskell for the type of 1, and we get a surprisingly complicated answer:

Prelude> :t 1
1 :: Num p => p

What this tells us is that 1 is an expression which has some type p which is an instance of the Num type class.

There’s a lot going on here! But the point is that when asked Haskell to evaluate 1 :: Integer, Haskell first had
to verify that Integer is an instance of Num, and then use capabilities of the Integer type that all instances of type
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class Num are required to provide. Likewise, when we asked Haskell to evaluate 1 :: Double, Haskell first had to
verify that Double is an instance of Num, and then use capabilities of the Double class that all instances of type class
Num are required to provide. In this case, the chain of reasoning went top-down, although since there’s only one
level, it’s a bit tricky to see. Let’s consider a more complex example.

Prelude> 2 + 3 :: Integer
5

This is deceivingly simple. We’re asking Haskell to evaluate the expression 2 + 3, producing an Integer. A first
bit of complexity here is the use of infix addition. Haskell permits us to use various infix operators, and this is a
great notational convenience, but the type system is actually assumes prefix operators, and so the expression 2 + 3
is translated to (+) 1 2, where (+) is the syntax for binary addition written in prefix form. We want this whole
expression to have the type Integer, and so we have to consider the type of (+) which is Num a => a -> a -> a.

At this point, it should be clear that the language of types is also an expression language, albeit with different operators.
What this means is that for any type a which is an instance of the Num type class, (+) is a function that takes two
arguments of type a, and produces a result of type a. [Note: we’re telling a bit of a white lie here, cf. currying, which
we’ll deal with in an upcoming lecture.] Since Haskell knows that the result is supposed to be of type Integer, it
must first check that Integer is an instance of Num (which it is), and then it can infer that the arguments are of type
Integer also. This enables it to interpret 1 and 2 appropriately as numeric literals that represent Integer values.

Haskell uses a similar line of reasoning to handle

Prelude> 2 + 3 :: Double
5.0

Albeit, with a visible difference due to the way Haskell prints floating point numbers.

Still, the Haskell type system has done such a good job of working invisibly behind the scenes that we might wonder
why it is there at all. So let’s break things. Consider

Prelude> (2 :: Integer) + 3 :: Double
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What could possibly go wrong?

We’re asking Haskell to add 2, considered as a value of type Integer, to some value represented by the numeric
literal 3, obtaining a result that’s a Double. This is a conundrum for (+) :: Num a => a -> a -> a. The type
constraint on its first argument requires that a be interpreted as Integer, whereas the overall type constraint on
the expression requires that a be interpreted as Double, and these are different types! Indeed, that’s what the error
message we get back from ghci says:

<interactive>:1:1: error:
• Couldn't match expected type ‘Double’ with actual type ‘Integer’
• In the expression: (2 :: Integer) + 3 :: Double
In an equation for ‘it’: it = (2 :: Integer) + 3 :: Double

This brings up an important point. Compiler error messages can be long and scary. They’re long because the compiler
writer doesn’t know exactly what information you need to figure out what’s wrong, and so they tend to err on the
side of giving you too much information, and they’re scary because you won’t necessarily know how to interpret
all of that information, and there’s a tendency to assume that because the compiler thought it mattered, you should
too.

The first line tells us where the error occurred, in this case, in an interactive session, on the first line, at the nineteenth
character position. This is TMI for now, but localization is crucial when our programs are spread out over multiple,
long files. The second line tells us about the error: at some point, our code seems to require that Double and
Integer are the same type, an inconsistency. The third and fourth lines consists of the expressions whose type
analysis failed, and the fifth hints at a capability of the interpreter we haven’t yet learned.

Exercise 1.1 Consider the expression (1 :: Integer) + 2 * (3 :: Double). This will cause a type error, because
the two different type constraints are inconsistent. One bit of trickiness is that the inconsistency could be revealed either in
the analysis of (+) or (*). Provide both analyses.

A Taste of Programming

The process for programming in Haskell typically involves writing code in a Haskell Source file, which will typically
have the extension .hs. Note that these code files must be plain text files (which is to say, you can’t edit them using
MS Word or similar word-processing programs, but can using Visual Studio Code or similar text editors). More
complex builds will require the use of the cabal build system. We’ll learn about that later, and for now can rely on
a simpler process.

Let’s suppose we want to be able to compute the length of the hypotenuse of a right triangle, given the lengths of
the sides. We know the pythagorean theorem from our high school math classes. Given a right triangle
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the sides a, b, and c are related by the formula a2 + b2 = c2. A quick reorganization of this formula gives us

c =
√
a2 + b2,

which determines c as a function of a and b, and which can be easily expressed as code.

-- Hypotenuse.hs

hypotenuse a b = sqrt (a^2 + b^2)

This is a simple Haskell source file. The first line is a comment, identifying this as the file Hypotenuse.hs. Com-
ments are annotations we make to the code that the compiler doesn’t interpret, but may help future readers (most
likely, us!) understand something about the code. The third line defines hypotenuse to be a function that takes
two arguments, and computes a value based on them. Assuming we’ve done this correctly, we can load this file into
ghci:

Prelude> :l Hypotenuse
[1 of 1] Compiling Main ( Hypotenuse.hs, interpreted )
Ok, 1 module loaded.
*Main>

The change in prompt isn’t important, but we’ve now added a new function to our system, and that is:

*Main> hypotenuse 3 4
5.0

At this point, we might consider ourselves done. But... real Haskell programmers wouldn’t be happy leaving things
here, and your instructors and graders won’t be happy if you do. Haskell programmers understand laziness much
more deeply than Perl programmers, both as a language evaluation strategy, and as attribute of good programming.
In particular, avoiding a little bit of disciplined work now, at the risk of having to do much more in the future
isn’t lazy, it’s a self-defeating strategy that costs us unnecessary work over time. So we’ll start by adding a module
declaration to our program, and some specially formatted comments that will save us time later in using this code.
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-- | A module for working with triangles.

module Hypotenuse where

-- | Compute the length of the hypotenuse of a triangle from the lengths
-- of its sides.

hypotenuse a b = sqrt (a^2 + b^2)

Note that as University of Chicago students, we expect that your comments will be clear and eloquent in their own
right, with correct spelling, grammar, and punctuation. It is often said that, “Documentation is the armpit of the
industry.” We can do better. You will do better.

These are Haddock comments, and are used to create Haskell Documentation. Note an ordinary comment begins
with a double-hyphen --, whereas a Haddock comment adds a space and a vertical bar -- |. The first comment
describes the purpose of the module, which typically consists of a number of related definitions, and the comment
before the definition of hypotenuse describes its intended meaning/use. If we load this, we’ll see a minor difference
in ghci’s prompts:

$ ghci Hypotenuse
GHCi, version 8.4.3: http://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling Hypotenuse ( Hypotenuse.hs, interpreted )
Ok, 1 module loaded.
*Hypotenuse>

Note how the module name is now incorporated in the prompt.

It is conventional to declare the types of all names defined at the top-level. This requires that we figure out what the
type of hypotenuse actually is. Fortunately, the compiler has already done this for us, and we can ask:

*Hypotenuse> :t hypotenuse
hypotenuse :: Floating a => a -> a -> a

At this point, we have a choice. We can simply copy the type that Haskell has computed for us back to our source
file, or we can chose a more restrictive type. Let’s say, for the sake of argument, that we’re confident that we’ll only
use this with Double values. We add the appropriate type declaration our source file as follows:

-- | A module for working with triangles.

module Hypotenuse where

-- | Compute the length of the hypotenuse of a triangle from the lengths
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-- of its sides.

hypotenuse :: Double -> Double -> Double
hypotenuse a b = sqrt (a^2 + b^2)

And then reload our source

*Hypotenuse> :r
[1 of 1] Compiling Hypotenuse ( Hypotenuse.hs, interpreted )
Ok, 1 module loaded.
*Hypotenuse>

Our code works as we’d expect, with the change that hypotenuse now has the more restrictive type we declared.

*Hypotenuse> hypotenuse 3 4
5.0
*Hypotenuse> :t hypotenuse
hypotenuse :: Double -> Double -> Double

One final change, albeit an extremely pedantic one, is to note the duplication of code, the ^2 part. Duplicated code
is a bad thing, because it is often very difficult to keep it all in sync. Codebases evolve over time, and divergent
evolution of duplicated functions leads to unnecessary complication and size. But we’ll illustrate how to deal with
this by adding a square function:

-- | A module for working with triangles.

module Hypotenuse where

-- | Compute the length of the hypotenuse of a triangle from the lengths
-- of its sides.

hypotenuse :: Double -> Double -> Double
hypotenuse a b = sqrt (square a + square b)

-- | Square a number.

square :: Num n => n -> n
square x = x ^ 2

Note that in this case, we decided to go with a more general type for square. Note as well that our definition of
square follows its use. This is not a problem (it would be in some languages), as Haskell considers all the declarations
in a module when it does its type analysis.
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One of the nice things about abstracting out duplicate code is that it often makes it worthwhile for us to think about
alternative implementations, e.g.,

square x = x * x

which won’t make a perceptible difference here, but may in more complicated contexts.

The use of Haddock comments enables us to produce nicely formatted documentation. We’ll cover how to do this
later.

A final remark for today: Haskell programmers care a lot about code quality. The language itself facilitates surpris-
ingly rapid development, but this doesn’t mean that real-world Haskell programmers knock off early to hit the bars.
They are far more likely continue working on their code after it meets its specifications, looking for ways to make it
more robust, more general, and more concise. This “tending of the garden” pays huge dividends over time.

Exercise 1.2 The law of cosines is a generalization of the Pythagorean Theorem, which allows us to compute the length c
of the third side of a triangle, given the lengths of the two other sides a and b, and the included angle γ.

Expand the Haskell script file Hypotenuse.hs to include a function law_of_cosines which takes three arguments: a,
b, and gamma, and returns the length of c.

Some notes: your function should take the angle gamma in degrees, but you need to be aware that the Haskell’s built in cos
function expects its argument to be in radians, i.e.,

> cos pi
-1

Note that pi is a predefined constant in Haskell for the mathematical constant π.

Floating point arithmetic in Haskell (like almost all programming languages) is finite precision, and only approximately
corresponds to the real numbers of mathematics. My implementation returned the following results, which you might want
to use as test data:

> law_of_cosines 1 1 60
0.9999999999999999
> law_of_cosines 1 1 120
1.7320508075688772
> law_of_cosines 3 4 90
5.0
> law_of_cosines 3 4 0
1.0
> law_of_cosines 3 4 180
7.0
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Chapter 2

Lists

Lists are an important and useful data structure in functional programming. Indeed, the name of the first widely
used functional programming language, Lisp, is a portmanteau of “List Processing.”

In Haskell, a list is a sequence of objects of the same type. Often, we’ll describe a list by an explicit enumeration of
its elements, e.g.,

[1,2,3,4,5]

This is a nice notation, but it is important to understand that it is syntactic sugar, i.e., a clear and concise notation
that reflects a commonly used pattern. For all it’s considerable merits, this notation obscures the essential fact that
there are only two kinds of lists:

• empty lists ([]), and

• lists that contain at least one element, and so are constructed using (:), which is pronounced “cons.”

More pedantically, the list above could be written as

1 : (2 : (3 : (4 : (5 : []))))

or more tersely (using the useful fact that (:) associates to the right) as

1:2:3:4:5:[]

Now, if you have any syntactic taste at all, you’ll prefer the first form, [1,2,3,4,5] to the second and third forms.
But this misses an important point—it is one thing to have a concise notation for lists, but if you want to write code
that manipulates list structure, you have to understand how they’re actually constructed.
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Defining List Functions By Recursion

Let’s start by implementing the standard length function:

-- | Functions for manipulating lists.

module ListFunction where

import Prelude hiding (length)

-- | Count the number of elements in a list.

length :: [a] -> Int
length [] = 0
length (c:cs) = 1 + length cs

There’s a fair bit going on here! A first thing to note is that length is a predefined function, and Haskell’s not
happy if the same name has two definitions. We avoid this problem by an import of the Prelude which hides
the definition of length. This isn’t all that common in practice, but it crops up a lot with list-based functions and
introductions to Haskell. Note that the length function in the Prelude has a different (and more general) type.

Note the type declaration. The length function that takes as arguments a list (over an arbitrary base type a), and
returns the number of elements it contains. This is a polymorphic definition, and the resulting function can be applied
to lists over any type. We’ve not seen the Int type before, but it is just a finite precision (usually 64-bit, these days)
integer. In this case, we don’t need a constraint on a, because we’re not going to do anything that depends on the
elements of the function.

The definition above is based on pattern matching. Instead of naming the arguments to a function via a variable,
as we’ve done before, the argument positions are inhabited by patterns, which either match or fail to match. Each
of the clauses of a pattern matching definition are considered in order, and the equation corresponding to the first
matching pattern is used.

This definition is also a natural recursion on list structure, i.e.,

• There’s a natural correspondence between the equations we use to define length and the list constructors ([]
and (:)).

• In the case where one of the constituent values of an argument (e.g., the cs in the second line above) has the
same type as whole argument, our definition applies the function we’re defining to that argument.

Let’s take the definition of length apart, piece by piece

length [] = ...
length (c:cs) = ...

14



The parentheses around the cons (:) in the second line are not optional. Function application binds more tightly
than infix operations inHaskell, and so, without the parentheses, it would interpret length c:cs as (length c):cs,
and interpret your equation as an attempt to define (:)!

In the first case, our pattern matches only the empty list [], which contains no elements, so we can define the result
directly:

length [] = 0

In the second case, the pattern matches a (:), and so we’re dealing with a list that adds an element onto the front of
another list. We can use a recursive call to account for the length of that sublist:

length (c:cs) = ... length cs

and we can use this result to compute the length of the original list, which has precisely one element more:

length (c:cs) = 1 + length cs

Finally, an experienced Haskell programmer would make one further change. Portions of a pattern that we don’t
need can be matched using just an underscore _, thus,

length [] = 0
length (_:cs) = 1 + length cs

This idiom allows us to focus on the parts of the pattern that are important in reducing an expression.

We can use the same approach in defining the sum function, which adds up the elements of a list.

-- | Compute the sum of the numbers in a list.

sum :: Num n => [n] -> n
sum [] = 0
sum (x:xs) = x + sum xs

In this case, the Num constraint is necessary because of our use of ()+.

Let’s consider a slightly different problem—summing the squares of the elements of a list. We’re going to consider
this simple problem from several angles.

A first approach would be a direct implementation, like this:
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-- | Compute the sum of the squares of the numbers in a list.

sumSquares :: Num n => [n] -> n
sumSquares [] = 0
sumSquares (x:xs) = x^2 + sumSquares xs

You will soon be able to write definitions like this pretty quickly, e.g., a sum of cubes function might be written like
this:

-- | Compute the sum of the cubes of the numbers in a list.

sumCubes :: Num n => [n] -> n
sumCubes [] = 0
sumCubes (x:xs) = x^3 + sumCubes xs

Higher Order List Functions

As natural as this is, and as comfortable as it becomes, experienced programmers want to avoid writing the same
code over and over again—so this will inspire them to find appropriate abstractions that capture the relevant com-
monalities, and then to express the particular versions as special cases.

For example, we might abstract away that we’re summing functions applied to elements of a list. This gives rise to
a definitions like this:

-- | Given a function f, compute the sum of the images under f of the elements of a list

sumf :: Num n => (a -> n) -> [a] -> n
sumf f [] = 0
sumf f (c:cs) = f c + sumf f cs

-- | Square a number

square :: Num n => n -> n
square x = x^2

-- | Compute the third power of a number

cube :: Num n => n -> n
cube x = x^3

-- | Compute the sum of the squares of the numbers in a list.
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sumSquares :: Num n => [n] -> n
sumSquares xs = sumf square xs

-- | Compute the sum of the cubes of the numbers in a list.

sumCubes :: Num n => [n] -> n
sumCubes xs = sumf cube xs

Although the second implementation of sumSquares is a bit longer (four lines vs. two), this second version is
to be preferred because it achieves a clean factoring of the problem into a recursive summing part, and a function
computing part, which makes it easier to build functions that sum other things, whereas in the first version, these
aspects are intertwined. Moreover, we’ve only started with the second version, and there is room for improvement.

One objection to the code above is that we’ve had to add top-level definitions of the square and cube functions,
even though they’re not something that we’re interested in directly. Of course, at this point, we only know how
to do top level definitions! We can simplify this conceptually by adding using local definitions of square and cube
where needed:

-- | Compute the sum of the squares of the numbers in a list.

sumSquares :: Num n => [n] -> n
sumSquares xs = sumf square xs where

square x = x^2

-- | Compute the sum of the cubes of the numbers in a list.

sumCubes :: Num n => [n] -> n
sumCubes xs = sumf cubes xs where

cube x = x^3

We can include many definitions within a single where clause, but they all have to indented (and by the same amount)
relative to the higher-level clause in which they occur. An alternative to where is let:

-- | Compute the sum of the squares of the numbers in a list.

sumSquares :: Num n => [n] -> n
sumSquares xs =

let square x = x^2
in sumf square xs

-- | Compute the sum of the cubes of the numbers in a list.

sumCubes :: Num n => [n] -> n
sumCubes xs =

let cube x = x^3
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in sumf cubes xs

The difference between let and where is more subtle than whether the definitions come first or last. The let
construct is part of the expression syntax of Haskell, whereas the where construct is part of the definition syntax.

Exercise 2.1 Consider the expression sumf (sumf square) [[1,2],[3,4]]. Do a step-by-step substitution-based
evaluation of this expression (you may omit trivial steps, e.g., square 4 => 16 is permitted).

But, as they say on late-night commercials, we’re not done yet!

Let’s factor the problem somewhat differently. In the current implementation, the process of building the sum and
evaluating the function remain intertwined, even as we’ve abstracted out the particular function being evaluated.
They can be separated. To that end, let’s consider the map function, which might be implemented as follows:

-- | Map a function across a list.

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

This is another natural recursion, which builds a new list, gathering into a list the image under the given function
of each of the elements of the original list. For example

> map square [1..4]
[1,4,9,16]

Note also another Haskellism for constructing a list. Certainly, writing [1..1000] is a lot easier than writing out
the list long hand, but it’s also, and more importantly, clearer and less error prone.

With map in hand, we can write

sumSquares xs = sum (map square xs)

This is literally a one-liner (assuming we’ve defined square), because sum and map are predefined in Prelude.hs,
and it’s superfluous to code them ourselves. It may not be clear that we’ve gained anything, but we’re not done yet.
Haskell programmers like to manipulate their code, applying meaning-preserving transformations that result in code
that more concise and more flexible.

One such tranformation is η-reduction. (The glyph ‘η’ is the Greek letter “eta.”) The way this works is that if we
have a definition of the form

f x = N x
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where N is an expression not containing x, we can cancel the x from both sides, and write

f = N

The mathematical idea underlying η-reduction is the principle of extensionality, the idea that two functions are equal
if they have the same domain, and have the same value at every point of that domain,

(∀x. f(x) = g(x)) → f = g.

Returning now to our earlier definition, we have

sumSquares xs = sum (map square xs)

This doesn’t take the formwe need for η-reduction, but it’s close: there’s only one occurrence of xs on the right-hand
side of the definition, and it comes at the end (albeit embedded within essential parentheses).

Haskell is actually a curried language, in which all functions are unary. Thus, a function like map, formally takes
a single argument (e.g., square in the example above), which returns a unary function. In Haskell, application
associates to the left, so the right hand side of this is actually

sum ((map square) xs)

The pattern f (g x) appears a lot in functional code, so naturally enough there’s an operator (.), called composition
such that f (g x) == (f . g) x. We can use this to re-write the definition above as

sumSquares xs = (sum . map square) xs

and η-reduce to

sumSquares = sum . map square

which is pretty tight. But was this all worth the effort? For a programmer, this is going to boil down to clarity,
efficiency, and maintainability. This may not seem too clear to you just yet, but it will grow on you. You can
think about a succession of functions that get applied to a list, read right-to-left, possibly including a summarization
function (like sum) at the end. And it’s very easy to think about changing the parts or order, e.g., altering the
summarization function so that a sum is replaced by a product.

This style of programming is sometimes called “point-free,” we don’t name the “point” in the domain to define the
function. Instead, we use function combinators.

Exercise 2.2 Implement the product function. This should take a list of numbers, and return their product. Unsur-
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prisingly, product is defined in the Prelude, which creates a conflict. You can avoid this by using a hiding clause as
above.

Use your implementation of product to determine the product of the squares of the first numbers 1 through 10.

Let’s suppose now that we wanted to sum the squares of the odd numbers from one to one-hundred. This involves
a new programming construct, guarded equations:

-- | Compute the sum of squares of the odd integers in a list

sumSquaresOfOdds :: Integral n => [n] -> n
sumSquaresOfOdds [] = 0
sumSquaresOfOdds (x:xs)

| odd x = x^2 + sumSquaresOfOdds xs
| otherwise = sumSquaresOfOdds xs

This captures a different sort of definition by cases: patterns consider the structure of the arguments to a function,
guards consider the values of those constituents. Note that patterns can introduce new bindings, whereas guards
do not. The evaluation of a block of guarded equations works much like the evaluation of a block of pattern-based
equations: each guard is considered in turn, and the equation associated with the first true guard is used.

After our discussion of map, perhaps you can anticipate the next step. Here we’re actually mixing together three
distinct things: filtering a list for elements that meet a particular test, squaring each resulting element, and combining
the results via sum. In this case, the filtering is the new part:

-- | Return a sublist comprised of the elements of a list that satisfies a predicate.

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

Note that the Bool type consists of values that can be True or False. Again, filter is a built-in function in the
Prelude, so we don’t actually need to implement it. But after our experience from simplifying sumSquares, the
final form of our solution practically writes itself:

sumSquaresOfOdds = sum . map square . filter odd

Exercise 2.3 Let’s consider the following problem: compute the sum of the first 100 natural numbers which are divisible
by 2 and 3, but not 4 or 9. We’d like to do this in a way that makes it easy to perform similar computations in the future.

It’s not hard to see that we’re going to need to use sum and filter. There’s a very nice function in the Prelude named

20



take, which will return the first n elements of a list. With this, the problem boils down to

result = sum . take 100 . ?? $ [0..]

There’s some new syntax here:

• The ($) operator is simply function application, but it differs in a couple of important ways from the usual use of
juxtaposition as application:

– juxtaposition has highest precedence (effectively precedence level 10), whereas ($) has the lowest (precedence
level 0),

– juxtaposition is left-associative, whereas ($) is right-associative

• It isn’t necessary to provide an upper-bound on a range expression, thus [0..] represents the infinite list of natural
numbers. Haskell’s lazy evaluation strategy makes it possible to use such values, as only as much of the list that is
actually needed for the calculation will be built.

How can we fill in the ??? First off, it would be nice to have a predicate divisibleBy such that divisibleBy d n
evaluates to True if and only if d evenly divides n. With such a predicate, we could solve the problem this way:

result = sum
. take 100
. filter (divisibleBy 2)
. filter (divisibleBy 3)
. filter (not . divisibleBy 4)
. filter (not . divisibleBy 9)
$ [0..]

This isn’t terrible, but it feels just a bit cumbersome. It would be nice to have a function allp which takes two arguments,
a list of predicates ps, and a value x, and which returns True if and only if p x evaluates to True for every p in ps. With
this, we could write:

result2 = sum
. take 100
. filter (allp [ divisibleBy 2

, divisibleBy 3
, not . divisibleBy 4
, not . divisibleBy 9
])

$ [0..]

This feels a lot better, because it is fairly easy for us to insert or delete tests. But we can due just a bit better still, writing
another function filterAll that combines filter with allp, so that
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result3 = sum
. take 100
. filterAll [ divisibleBy 2

, divisibleBy 3
, not . divisibleBy 4
, not . divisibleBy 9
]

$ [0..]

For this exercise, you should define

• divisibleBy

• allp

• filterAll

And verify that all three results are the same. Strive for simplicity and clarity in your code.

There’s something quite deep happening with Exercise 2.3, in that this code produces a result in finitely much time,
even though some of the subexpressions (consider [0..]) describe infinite lists. The key feature of Haskell that
makes this possible is laziness: we don’t need to build all of these infinite lists, just enough so that the first 100
elements of the top-level list are defined. So that’s all the evaluation that Haskell does!

Exercise 2.4 The definition of allp you gave for the previous exercise was probably a recursive definition in the style of
the definition of map or filter. If you think about the problem a bit, you’ll see that you the definition can be reduced to
mapping application of a list of functions to a given point with a function that takes a list of booleans, and returns True if
and only if all of the elements of that list are True. The later function already exists in the Prelude, as and. This means
that you can define allp without an explicitly recursive definition, all you need to do is come up with a function that
evaluates another function at a given point.

Give such a definition of allp.
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Chapter 3

Algebraic Data Types

Haskell provides a rich collection of atomic types to the programmer. There are floating-point types Double and
Float, integer types Integer (infinite precision) and Int (machine precision, these days, 64-bit), a character type
Char (unicode) and Char8 (ASCII), etc.

Naturally, the type system is extensible—we can and often do introduce new types within our programs. One of
the principal mechanisms for doing this is algebraic data types (ADTs).

Today, we’ll take a look at some (simplified versions) of predefined ADTs. You shouldn’t try to redefine these. Bad
things will happen. Very bad things.

Simple Algebraic Data Types

The simplest Algebraic Data Type (ADT) is

data ()
= ()
deriving (Eq,Ord,Show)

This is the oddly opaque “unit” type. It is a type that has a single value, which happens to have the same name as it
has (and an unusual name it is!). Despite seeming to offer nothing, () plays an important role in Haskell, and you’ll
see it leak out as an argument to a polymorphic type from time to time, e.g., main :: IO (). It may be useful
to think of this as a 0-tuple. The deriving clause gives us default implementations of the Eq, Ord, and Show type
classes, which work as expected.

> :t ()
() :: ()

Next up, we have the Bool type, for boolean values:
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data Bool
= False
| True
deriving (Eq,Ord,Show)

This defines a data type that has two distinct values, True and False. It’s just a bit! The Bool data type gets used a
lot, as predicates (condition tests) are naturally boolean valued, and so there are special operators and syntax devoted
to Bool. The three standards boolean operators are defined via pattern matching definitions, much as we saw last
lecture with lists.

-- | Boolean negation.

not :: Bool -> Bool
not True = False
not False = True

-- | Boolean conjunction, a.k.a., "and."

(&&) :: Bool -> Bool -> Bool
False && _ = False
True && y = y

-- | Boolean disjunction, a.k.a., "or."

(||) :: Bool -> Bool -> Bool
True || _ = True
False || y = y

This brings us to an important rule of Haskell syntax. Each non-operator constructor (and type) begins with a
capital letter, whereas variables (i.e., non-operator function names) start with a lower-case letter.

Boolean conjunction a && b will be True only if a and b are both True, and likewise boolean disjunction a || b
will be False only if a and b are both False.

We’ve already seen the special syntax (guards) associated with Bool. Consider the following predicate definitions:

-- | A predicate for even Integers.

even :: Integer -> Bool
even n = mod n 2 == 0

-- | A predicate for odd Integers.

odd :: Integer -> Bool
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odd n = not (even n)

The even function will return True for even n, and False for odd n. Note that == is the equality predicate and is a
function in the Eq type class, as distinct from = which is used in definitions. (Ordinary mathematical notation often
conflates these two distinct meanings.) Note also that there are predefined even and odd functions of slightly more
general type Integral a => a -> Bool defined in the Prelude.

Guards allow us to use predicates to give different defining equations for based on different values of its arguments,
in addition to pattern matching, which enables us to make distinctions based on the structure of the arguments.
Consider

|x| =

{
x if x ≥ 0,
−x otherwise

the familiar absolute value function for real numbers. We could define

-- | The absolute value function

abs x
| x >= 0 = x
| otherwise = -x

were it not for the fact that abs is defined in Prelude as a member of the Num type class. Let’s ignore that nuance
for now, and consider the definition via guarded equations. Here, rather than having a sequence of equations that
involve patterns, we have a sequence of alternative definitions associated with guards, i.e., boolean predicates of the
arguments. Evaluation occurs by considering each guarded equation in the order they appear in the definition, and
using the first equation whose guard evaluates to True. Haskell also supports an if ... then ... else ...
construct, so we could have defined

abs x = if x >= 0
then x
else -x

Haskell syntax doesn’t get along with unary operators, and so it’s often necessary to write (-x), but we’re ok with
the bare unary negation here (because it is preceded by else, which is a keyword and not an ordinary variable). You
might wonder why there are different syntaxes for what are basically the same thing. The guard syntax can be used
as a way of modifying pattern matches, and yes, a simple variable is a pattern, albeit one that matches everything,
whereas an if ... then ... else ... can appear anywhere in an expression. This is similar to the distinction
we saw with which vs. let.

Exercise 3.1 Consider the collatz function defined as follows:

collatz(n) =


1, if n = 1

1 + collatz(n/2), if n is even
1 + collatz(3n+ 1), otherwise
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Give Haskell definitions of collatz using guards, and collatz' using if ... then ... else .... [We can use
apostrophes in variable names!] Note that you should use div rather than (/) to divide integral values.

Another simple ADT is Ordering,

data Ordering = LT | EQ | GT
deriving (Eq,Ord,Show)

Which is used as the return type of the compare :: Ord a => a -> a -> Ordering function of the Ord type
class.

A next step in complexity is polymorphic ADTs. These are ADTs that take one or more type variables, e.g., the
pair type, which could be written as

-- | The Pair data type

data Pair a b = Pair a b

But since tuples arise frequently in programming practice, it is convenient to have a special, terse and familiar notation
for them, specifically, (a,b), and Haskell supports this. Somewhat counter-intuitively, this leads to the following
definition:

-- | The 2-tuple type

data (,) a b = (,) a b

This is notationally a bit opaque, but (,) is (by a mild abuse of notation) just the prefix form of pairing operator
“,” (the abuse being in the fact that , isn’t an operator, but in fact is special syntax...). As a type, this abstracts a
value that contains values of two other types. This is often useful, e.g., when we want to return multiple results
from a single function, e.g., the divMod returns a pair consisting of the quotient and remainder of a division.

> :t divMod
divMod :: Integral a => a -> a -> (a, a)
> divMod 10 3
(3,1)

There are 3-tuples, 4-tuples, all the way through 62-tuples. Note that tuples support Eq, Ord, and Show instances
when their constituent types do, via deriving instances.

Exercise 3.2 The Prelude provides some simple functions for dealing with pairs, fst and snd for extracting components,
and curry and uncurry for swizzling between functions that expect two arguments, either separately, or packaged together
via a pair.
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Unfortunately, analogous functions do not exist for 3-tuples, etc. Code a Haskell module Triple.hs which provides
analogous functions fstOf3, sndOf3, thirdOf3, curry3, and uncurry3.

Polymorphic ADTs

Let’s consider a simple example of a polymorphic type:

data Maybe a
= Nothing
| Just a
deriving (Eq,Ord,Show)

We can think of Maybe a as a type that contains 0 or 1 a values. “Maybe wrapped types” often come up in the
context of error handling, e.g., we might use Just a to denote a computation that successfully completes with the
value a, and Nothing to denote a computation that encountered some sort of error.

Let consider a fairly complex, but informative example. Consider the Num type class. Its instances have to provide
()+, (-), and (*) (and a few other functions), but not (/). We might ask, why is (/) different? There are at
least a couple of answers. One is that we expect division to work a bit differently with floating-point rather than
integral types, and indeed Haskell provides three different functions, (/), div, and quo for division, the first for
ordinary floating point division, the other two for integer division with different rounding behavior. But there’s
another reason, which is that (/) isn’t total. We have to worry about division by zero.

By default, division by zero generates an exception, which is an ugly, heavy-weight control structure in Haskell, and
beyond this class. But we can approach the problem differently using Maybe, using Nothing as a NaN, a value that
is not a valid number. With some processor configurations, divisions by zero in floating point arithmetic result in
NaN (not a number), but there is no native NaN for integral types.

As we’ll see, we can use Maybe wrapped integral types to “compute” an entire expression, and then check the result
for an error. If the result is Nothing, then some sort of error occurred, whereas if it is Just a, then the computation
succeeded with the value a, and we can use ordinary code (e.g., a pattern match, rather than an exception handler)
to distinguish between the two. To that end, let’s consider some code that is much more complicated than we’ve
seen before:

-- | Wrapping a number in Maybe

module MaybeNum where

-- | Derived instance definition for Num (Maybe n) given Num n.

instance Num n => Num (Maybe n) where
Just a + Just b = Just $ a + b
_ + _ = Nothing

Just a - Just b = Just $ a - b
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_ - _ = Nothing

Just a * Just b = Just $ a * b
_ * _ = Nothing

negate (Just a) = Just $ negate a
negate _ = Nothing

abs (Just a) = Just $ abs a
abs _ = Nothing

signum (Just a) = Just (signum a)
signum _ = Nothing

fromInteger i = Just $ fromInteger i

The instance construct will make a Maybe n an instance of the Num type class, so long as n is an instance of Num
itself. The Num type class has quite a few functions we have to implement. The $ operator is just application, albeit
right associative and of low precedence, as opposed to the usual implicit space, which is left associative and of highest
precedence. Using $ as we do here spares us a few parentheses. This is a “deriving instance,” as it defines instances
for a whole lot of types and not just one. This is something that you can’t do with a Java interface.

This seems peculiar, but it works, e.g.,

> 1 + 3 * 3 :: Maybe Integer
Just 10

Why might we want such an instance declaration? What does it gain us? Patience.

-- | safe division

infixl 7 //

(//) :: (Eq n, Integral n) => Maybe n -> Maybe n -> Maybe n
Just a // Just b

| b == 0 = Nothing
| otherwise = Just $ div a b

First we define a new infix name, (//), which will have the same fixity and precedence as ordinary division. Then,
we implement our new (//) operator as integer division, including a denominator check which returns Nothing if
the denominator equals zero. The Integral type class adds div, and the Eq type class added (==).

> 1 + 2 // 0
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Nothing

This is what is gained: We’ve now have modified types that allow for errors to propagate seamlessly through the usual
process of arithmetic expression evaluation, and so don’t require exception handling or other exotic flow control to
deal with if they occur. If you’ve programmed in Swift, this may remind you of Swift’s optional types, and the way
they can propagate errors through call chains. Of course, Swift appropriated the concept from Haskell (somewhat
unusually, with credit given), and not the other way around.

Exercise 3.3 We could have approached this example by creating a deriving instance Integral n => Integral (Maybe n),
as div is part of the Integral type class. But this would involve implementing several other type classes. Explore the doc-
umentation, to determine what type classes are involved, and what functions they contain.

Recursive ADTs

You may have guessed that the list data type from last lecture is itself just an ADT provided by the Prelude. We
can imagine that the list data type is defined as follows:

infixr 5 :

data [] a
= []
| a : [] a

The prefix use of [] as a type constructor is a bit unusual, but follows a pattern that we saw with tuples. We’ve seen
the usual syntax Haskell uses for list types in the last lecture, i.e.„ the more familiar [a], but it’s important to be
aware of this more primitive form.

Part of what is significant about this definition is that it is recursive, i.e., the data-type is defined in terms of itself.
This is a very useful facility, and as we’ve seen, one that can give rise to natural recursions in the functions that
manipulate data of this type.

As with tuples, lists belong to the Eq, Ord and Show type classes when their underlying types do.

Lists are a widely used in Haskell to build a variety of types, e.g.,

type String = [Char]

The type declaration, somewhat counter-intuitively, doesn’t introduce a new type (that’s what data is for), but
instead a type alias, i.e., another name for a type. This particular representation choice for String means that we
can use ordinary list-based functions for working with strings, e.g.,

> length "foo"
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or

> "foo" ++ "bar"
"foobar"

We haven’t looked at the (++) function before, and this is a natural time to do so:

-- | Append two lists.

infixr 5 ++

(++) :: [a] -> [a] -> [a]
[] ++ bs = bs
(a:as) ++ bs = a : (as ++ bs)

Note here that both (++) and (:) are infixr 5, and so the parentheses on the right hand side of the last equation
in this definition are not strictly speaking necessary, but this depends on the associativity of the operators, and not
merely their precedence, and so is more fragile than usual. Adding the parentheses here seems prudent: it doesn’t
detract from clarity, and doesn’t make what seem like unreasonably optimistic assumptions about the reader’s ability
to remember the minutiae of precedence and associativity.

A particularly useful data structure, built out of tuples and lists, is an association list, [(a,b)]. Association lists are
often used as a simple implementation of dictionaries, where a is the type of the key (or entry or definiendum) and
b is the type of the value (or gloss or definiens).

The following function is defined in the Prelude, and it shows how several of the language features we’ve been using
work together:

-- | Look up a value by key from an association list, returning a Maybe wrapped result.

lookup :: Eq a => a -> [(a,b)] -> Maybe b
lookup _ [] = Nothing
lookup a ((k,v):ps)

| a == k = Just v
| otherwise = lookup a ps

The design choice here, using Maybe to wrap a result so that we have a way to deal with the “key not present”
problem isn’t the only choice possible. Other possibilities involve returning an unwrapped value of type b, and deal
with the possibility that the key isn’t present in a different way:

• If we’re confident that the key will always be there, we could throw an exception if it’s missing. This gives us
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the simplest code at the call site, but involves some programming risk.

• We could provide a default value to be returned as an argument to a modified lookup function.

• We could modify the representation of a dictionary, providing a default value.

Let’s implement all three. For the sake of simplicity, we’ll use our base lookup function in all three cases.

-- | Look up a value by key from an association list, throwing an error if the key is missing.

lookupWithError :: Eq a => a -> [(a,b)] -> b
lookupWithError a dict = case lookup a ps of

Nothing => error "key not found"
Just v => v

-- | Lookup a value by key from an association list, returning a default value on missing key.

lookupWithDefault :: Eq a => a -> b -> [(a,b)] -> b
lookupWithDefault a b dict = case lookup a dict of

Nothing => b
Just v => v

-- | A dictionary with default value:

data Dictionary a b = Dictionary b [(a,b)]

-- | Lookup a value by key from a Dictionary, returning the Dictionary's default value
-- on missing key.

lookupInDictionary :: Eq a => a -> Dictionary a b -> b
lookupInDictionary a (Dictionary default dict) = case lookup a dict of

Nothing => default
Just value => value

Note that case is an expression that enables pattern matching. Although we don’t use it here, guarded equations
can be used with the patterns in a case statement just as they are used in definitions.

Exercise 3.4 Implement the three functions lookupWithError, lookupWithDefault, and lookupInDictionary
by direct recursions, i.e., without calling lookup.

Exercise 3.5 A common data structure is a rose tree. This is a kind of tree in which each node holds a value of a particular
type. The actual declarations are a bit different (they rely on Haskell’s record syntax, which we’ll see in due course), but
they amount to:

-- | A rose tree.
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data Tree a = Node a (Forest a)
type Forest a = [Tree a]

Note that recursion can be mutual, and need not be direct.

A tree consists of a node, which has two constituents: the value of type a, and a list of children.

Rose trees are often used to represent semi-structured data, e.g., an outline, or an XML infoset.

Write a function preorder :: Tree a -> [a] which returns the values contained in a Tree as a list, based on a
preorder traversal (i.e., the value at a node comes before the values at its children). It may be helpful to know about the
function concat :: [[a]] -> [a], which flattens a list of lists into a simple list. (Note that the actual type of concat
is just a bit more general than this.)
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Chapter 4

Case Study: Peano Arithmetic

Today, we’re going to jump into the deep end of the pool, Haskell wise. Don’t be put off if you don’t understand
everything. Today’s lecture is mostly literature, i.e., your task as a student is to read and expand your mind. I’ll
expect a bit of mimcry at first, real comprehension will come in time.

Our subject for today is the Peano-Dedekind axioms for arithmetic. Yes, we’re going to redo third-grade math,
but as it might be done by a graduate student studying mathematical logic. The underlying structure is the natural
numbers, 0, 1, 2, ….

The Peano-Dedekind axioms posit the existence of a constant 0 and function s (the successor function) with the
following properties:

• 0 is a natural number,

• s is a one-one function from the natural numbers to the natural numbers, i.e., for all natural numbers a, s(a)
is also a natural number, moreover, for all natural numbers a and b, if s(a) = s(b) then a = b,

• 0 is not a successor, i.e., for all a, s(a) 6= 0.

• every natural number is either 0 or a successor, i.e., for all a, a = 0 or there exists b such that a = s(b).

We’ll start with a data definition:

data NaturalNumber = Zero | S NaturalNumber
deriving (Show)

This introduces a new type. Haskell’s type system is a central part of the language, and our ability to introduce
new types that exploit built-in facilities of the language is both useful and powerful. The type system partitions the
universe of values and expressions into equivalence classes, and limits how the elements of these equivalence classes
can be combined. Types are denoted by type definitions (as above) and type expressions (of which more later).

The definition above expresses the intent that natural numbers come in two distinct forms (it is helpful here to read
| as ”or”): Zero, and S x where x is also a NaturalNumber. Thus, Zero, S Zero, S (S Zero) are values (and
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expressions) of type NaturalNumber, which we ordinarily know by the names zero, one, and two respectively.
Note here that S is not just a function, it is a constructor, which can be thought of as a kind of labeled box that holds
another value of type NaturalNumber. Haskell uses a simple, mandatory notational convention here: variables
have names that begin with lower-case letters (including _), while constructors begin with an upper-case letter. The
deriving (Show) instructs Haskell to print natural number values via constructor-based expressions.

Let’s define a few names for common natural numbers:

-- common names for small natural numbers

zero = Zero
one = S zero
two = S one
three = S two
four = S three
five = S four
six = S five
seven = S six
eight = S seven
nine = S eight
ten = S nine

There are several things to notice here. The first is a simple comment, which is introduced by a double hyphen,
--. This, and any text that follows on the same line, is ignored by Haskell. This text is there to support our
understanding. The next is the sequence of definitions, in which variables are bound to values denoted by expressions.
Note that in Haskell, like many programming languages, we use = to indicate binding. This essentially creates
equality by fiat, but it is distinct from the equality predicate, which we’ll see next.

$ ghci NaturalNumbers.hs
> three
S (S (S Zero))

Equality and Ordering

First, we’ll write code that makes the NaturalNumber type an instance of the Eq typeclass.

instance Eq NaturalNumber where
Zero == Zero = True
Zero == S y = False
S x == Zero = False
S x == S y = x == y
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We can make a tiny code improvement here: note that the x and y on the left-hand side of the bindings in the 2nd
and 3rd line of the definition are not used on the right hand side. This means that we don’t actually need to name a
variable:

instance Eq NaturalNumber where
Zero == Zero = True
Zero == S _ = False
S _ == Zero = False
S x == S y = x == y

In Haskell, types are organized into typeclasses. This is a very different meaning of “class” than you might have
encountered in a language like Java. It’s actually closer to Java’s notion of an interface, but more powerful. The
significance of a typeclass is that all types that belong to a given typeclass define certain common names. In the case of
the Eq typeclass, instances must implement one or both of == (the equality predicate) or /= (the inequality predicate),
and having done so, will have both defined for them. In this case, we’re defining the equality predicate ==, based on
the Peano-Dedekind axioms: Zero == Zero is a special case of reflexivity, Zero does not equal any successor, and
two successors are equal if and only if their predecessors are equal (this follows from s being one-to-one).

There’s no essential difference between defining an ordinary function (one that is applied in prefix to zero or more
argument/s), and defining an infix binary function like ==: we bind patterns to expressions to expressions in both
cases. Indeed, from Haskell’s point of view, infix binary functions are just syntactic sugar for ordinary (curried)
binary functions. Having said that, the definition of equality is interesting, because it’s recursive, i.e, we are defining
== in terms of itself when we write S x == S y = x == y. Being able to define a function by recursion is powerful,
but it’s not free. Such a definition is going to drive a sequence of substitutions (as we saw in Lecture 1), a sequence that
might or might not terminate. In this case, == will terminate on grounded elements of the natural numbers, because
we defined it without recursion on base cases (Zero), and the recursive definition in constructed cases involved
recursive calls of the function being defined on proper substructures of the argument. We will call recursions like
this natural, or structural recursions, and the proof of termination follows from ordinary mathematical induction.

> ten == ten
True
> ten == nine
False
> ten /= nine
True

Let’s understand how this works on a small example:

two == one
==> S one == S zero
==> one == zero
==> S zero == Zero
==> False
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How many of you noticed the weasel-word “grounded” up above?! This is actually important, and it gets to one of
the ways that Haskell is not like other languages that you might have experienced. Let’s talk about this particular
case. Zero is grounded. This is a specific case of a general principle: all of the nullary constructors (i.e., constants)
of an algebraic type are grounded. Also, if n is grounded, then S n is also grounded. Again, this is a specific case
of a general principle: applying a k-ary constructor to k grounded values, results in grounded value. At this point,
you’re probably asking yourself, “Are there any ungrounded values?!” Yes. Consider

infinity = S infinity

What is infinity? Note infinity is defined recursively, but not naturally, because the right-hand side of the
recursion mentions the left-hand side (rather than a proper substructure thereof). Therefore this is a potentially
dangerous definition. Note that there’s nothing special about Haskell in allowing you to make such a definition –
you can do something analogous in any general purpose programming language. The difference is that in Haskell,
such definitions can be useful, which is to say, they can be used in terminating computations. Of course, you wouldn’t
want to simply evaluate infinity:

> infinity
(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S ...
^-C
Interrupted.
>

But this works:

> infinity == one
False
>

Why?! Let’s trace it...

infinity == one
==> S infinity == S zero
==> infinity == zero
==> S infinity == Zero
==> False

You’re all invited to try this in Java. Get back to me when it finishes :-).

Whether the inclusion of objects like infinity in our NaturalNumber type seems like a good idea or not, it is an
inevitability, and this is one of the ways that computational systems can fail to exactly correspond to mathematical
systems. Objects like infinity are explicitly excluded from Peano-Dedekind Arithmetic by the induction axiom,
which essentially says that all (Peano-Dedekind) natural numbers are grounded.
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Adding infinity has other costs, e.g., computed equality is no longer reflexive, and this can be a trap in naïve
reasoning about code.

infinity == infinity
==> S infinity == S infinity
==> infinity == infinity
...

This leads to a high-speed twiddling of the CPUs thumbs, but rather than termination with the result True. A
general rule of thumb is that natural recursions are safe, i.e., they terminate, because all recursive calls are made to
simpler arguments, and therefore a termination proof can be obtained by induction over the definition of the set of
grounded values. The problem is that the grounded values of the domain aren’t exhaustive.

Exercise 4.1 Haskell contains an Ord typeclass, consisting of types with a natural trichotomous ordering. Provide an
instance declaration that adds NaturalNumber to the Ord typeclass.

The documentation for the Ord typeclass can be found here, as well as on your system (assuming you’ve properly installed
the Haskell Platform). The most satisfactory way to do this is by implementing the compare function, which takes two
arguments, and returns LT, EQ, or GT, according as to whether the first argument is less than, equal to, or great than, the
second argument, respectively.

To do this, complete the following definition

instance Ord NaturalNumber where
compare Zero Zero = EQ
...

Once you’ve done this, you should be able to do simple comparisons, e.g.,

> ten >= nine
True

Nonterminating computations are inevitable in any general-purpose programming language. The problem is not just
infinity, which is in some sense a natural “limit point” in the natural numbers, but also definitions that twiddle
their thumbs without creating new constructors, e.g.,

loop :: NaturalNumber
loop = loop

Here, we provide a type ascription to loop because there’s not enough information otherwise for the compiler to
figure it out. This may seem like a silly example, but it’s easy to achieve the same effect accidentally, and often
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difficult to sort out when you do. Oddly enough, loop can be used to define new natural numbers, and we can even
compute with them:

> S loop == Zero
False

but

> loop == loop
...

never terminates. It might seem to be a defect of Haskell that we can’t weed out ”unintentional” values of type
NaturalNumber like the values of loop and infinity, but if so, it’s a defect that all current and future programming
languages must share, a consequence of the undecidability of the halting problem, one of the most fundamental
theorems of computability theory, in essence a restatement of the Gödel’s celebrated incompleteness theorem for
Peano Arithmetic, which oddly enough is the subject of this lecture.

Addition and Multiplication

The principal operations of Peano-Dedekind arithmetic are addition and multiplication, which are recursively de-
fined. This is most naturally accomplished by adding NaturalNumber to Haskell’s Num typeclass. Doing this
correctly requires implementing a number of functions, +, *, - (or negate), abs, signnum, and fromInteger.
We’ll get the definitions of + and * directly from the Peano-Dedekind axioms.

instance Num NaturalNumber where
x + Zero = x
x + S y = S (x + y)

x * Zero = Zero
x * S y = x + x * y

Haskell will permit us to provide partial implementations of typeclasses, although not without complaint. Even so,
this is a useful way to proceed, because it allows us to test our code incrementally.

> two * three + one
S (S (S (S (S (S (S Zero))))))

We’ll next add an implementation of fromInteger, along with a simple helper function nat:

instance Num NaturalNumber where
...
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fromInteger n
| n > 0 = S (fromInteger (n-1))
| n == 0 = Zero

nat :: NaturalNumber -> NaturalNumber
nat = id

The definition of fromInteger involves a programming new construct, guarded equations. The idea here is that
we’ll define a function by cases through a sequence of predicates (tests) and equations. The reduction of a term will
evaluate each of the predicates in turn, until a predicate evaluates to True. Once this happens, the corresponding
equation is used. The point to this definition is that it consciously avoids defining fromInteger on negative inputs,
as this is meaningless in the context of the natural numbers.

The nat function is just the identity, but with a restricted type. We can use nat to force the interpretation of a
literal like 1234 as a NaturalNumber via the fromInteger function.

The significance of these definitions is that they enable us to take advantage of Haskell’s input processing. Consider
a simple expression like:

2

What is the type of 2? The answer is that it can belong to any type that belongs to the Num typeclass, although it
defaults to Integer (an “infinite-precision” integral type). By adding fromInteger, we make expressions like this
meaningful:

two + 27

In effect, the two, which can only be a NaturalNumber, forces both + and 27 to be interpreted as a binary operator
on NaturalNumber and a NaturalNumber respectively. The function nat does the same thing. Here we see both
a type declaration (of which much more later), and a definition. Using nat enables us to force the interpretation of
a numeric literal to be a NaturalNumber. Thus, we can write

> nat (2 * 3 + 4)
...

As we’ll see later, this forces the expression 2 * 3 4+ to have the type NaturalNumber, and this in turn will
ultimately force 2, 3, and 4 to have type NaturalNumber too.

...
S (S (S (S (S (S (S (S (S (S Zero)))))))))
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We can write this with one fewer character via

> nat $ 2 * 3 + 4
S (S (S (S (S (S (S (S (S (S Zero)))))))))

Here, $ is a low precedence right associative infix operator for function application. It is a friend, a good friend,
which can save us from the “lots of irritating single parentheses” that is sometimes used in a pejorative etymology
of “Lisp.”

Exercise 4.2 Complete the definition of instance Num NaturalNumber by implementing -, abs and signnum in
as meaningful a manner as possible. Note that for natural numbers, subtraction is truncated at Zero, i.e., evaluating
one - ten should return Zero.

Exercise 4.3 It’s easy to use pattern matching to write simple number theoretic functions using pattern matching like this:

even Zero = True
even (S Zero) = False
even (S (S n)) = even n

but it’s much more convenient to take advantage of the machinery we’ve built up, and write it like this:

even n
| n == 0 = True
| n == 1 = False
| otherwise = even (n-2)

and indeed, I tend to think of the first form as a translation of the second into the particular representation we used for
NaturalNumber, whereas the later is ”more generic,” and because it doesn’t make assumptions about representations,
works perfectly well for other representations.

Write such representation-independent implementations of odd and remainder. Note that because even and odd are
defined in the Haskell Prelude, it’s necessary to begin the Haskell source file that includes your definitions with an import
statement that explicitly hides them:

import Prelude hiding (even,odd)

Laziness

Thus far, we’ve been modeling Haskell’s evaluation mechanism via term rewriting. This is not exactly correct, but
it will do for now.
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Now, my friend Robby, an exquisite Scheme programmer, would instinctively re-write the definition of + as follows:

x + Zero = x
x + S y = S x + y

Remember here that application binds more tightly than infix operations, so this change is from the original
S (x + y) to (S x) + y in Robby’s code.

If you ask Robby why, he’d talk about “tail recursion,” and about why the second form is tail recursive (and so runs
in constant stack space), whereas the first form is not (and so involves putting a bunch of pending “apply S to the
result, and return” frames on the stack). And he’d be perfectly right. In Scheme. But Haskell is not Scheme, and
Robby’s definition involves a “loss of laziness” if carried over unreflectively from Scheme to Haskell. Let’s see how
that works.

Suppose we want to evaluate ten + ten == one. If we use the original definition, we’d have

ten + ten == one
==> ten + S nine == S zero
==> S (ten + nine) == S zero
==> ten + nine == zero
==> ten + S eight == Zero
==> S (ten + eight) == Zero
==> False

In effect, we only needed to apply the successor case of the addition rule twice to prove that ten + ten /= one.
Whereas, with Robby’s implementation, we’d have to do something like this:

ten + ten == one
==> ten + S nine == S zero
==> S ten + nine == S zero
==> S ten + S eight == S zero
==> S (S ten) + eight == S zero
==> S (S ten) + S seven == S zero
==> S (S (S ten)) + seven == S zero
... -- 13 steps elided
==> S (S (S (S (S (S (S (S (S (S ten))))))))) + Zero == S zero
==> S (S (S (S (S (S (S (S (S (S ten))))))))) == S zero
==> S (S (S (S (S (S (S (S (S ten)))))))) == zero
==> S (S (S (S (S (S (S (S (S ten)))))))) == Zero
==> False

Note that we got the same answer both times, but that Robby’s implementation required that we completely reduce
the addition, whereas the original implementation did not. This point can be driven even further. With the first def-
inition, we can evaluate nine + infinity > ten, and promptly obtain the result True. With Robby’s definition,
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this would run forever without returning a result.

Exercise 4.4 The axiom for the successor case of multiplication in the Wikipedia article is not what I remembered from
graduate school. The crux of thematter is whether you consider S x = x + 1, or S x = 1 + x, and theWikipedia article
assumes the second. If we assume the first, as I remember it, the natural definition for the successor case of multiplication is
subtly different:

x * S y = x * y + x

The form that I remember is better Haskell, in the sense that it’s lazier. Illustrate this by a simple example, as above.

A complete version of today’s program (and a reasonable starting point for today’s exercises) is here: NaturalNumber.hs.
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Chapter 5

Functions

Lambda

Consider our earlier definitions of sumf:

-- | Given a function f, compute the sum of the images
-- under f of the elements of a list

sumf :: Num n => (a -> n) -> [a] -> n
sumf f [] = 0
sumf f (c:cs) = f c + sumf f cs

The sumf function is higher-order, because it takes a function as an argument. This can be inconvenient, as in our
implementation of sumSquares, as we needed to define a top-level square function to pass to sumf.

-- | Square a number

square :: Num n => n -> n
square x = x^2

-- | Compute the sum of the squares of the numbers in a list.

sumSquares :: Num n => [n] -> n
sumSquares xs = sumf square xs

But there is another way. One of Haskell’s sources of mathematical inspiration is Alonzo Church’s λ-calculus (λ
is the Greek letter “lambda”), which included a notion of abstraction that allowed the definition of a function apart
from the naming of that function. In abstraction, we consider an expression of our language, e.g., x^2, and turn it
into a function by abstracting over the variable x, thus:
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-- | Compute the sum of the squares of the numbers in a list.

sumSquares :: Num n => [n] -> n
sumSquares xs = sumf (\x -> x^2) xs

Note that the ascii backslash \ is used to recall the memory of the form of the λ character.

Indeed, our ordinary means of defining a function combines two distinct and more primitive ideas—the definition
of a function per se, and the binding of a name to that value—into a single useful idiom. We can use abstractions to
tease these apart, i.e.,

-- | Square a number

square :: Num n => n -> n
square = \x -> x^2

Indeed, behind the scenes, the compiler does this for us.

Haskell has a couple of more useful tricks involving λ. One of them deals with what we ordinarily think of as
multi-argument functions, e.g., consider the useful zipWith function, which combines two lists (not necessarily of
the same type) to produce a list, via a combining function:

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (a:as) (b:bs) = f a b : zipWith f as bs
zipWith f _ _ = []

Let’s consider a simple problem. We have a [String], representing keys, and an [Int] representing values. We
want to produce a table, e.g.,

> formatKeysAndValues ["one","two","three"] [1,2,3]
one: 1
two: 2
three: 3

We’ll use the unlines :: [String] -> String function to convert a list of strings into a multi-line string, and
zipWith to combine the keys and values to produce a line of output, e.g.,

-- | format a list of key and a list of values

formatKeysAndValues :: Show s => [String] -> [s] -> String
formatKeysAndValues ks vs = unlines (zipWith formatLine ks vs) where
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formatLine k v = k ++ ": " ++ show v

We can use λs to rewrite the local definition:

formatLine = \k -> \v -> k ++ ": " ++ show v

and then replace the name by its definition:

formatKeyAndValues ks vs =
unlines (zipWith (\k -> \v -> k ++ ": " ++ show v) ks vs)

Haskell allows us to collapse the λs, and use \k v -> k ++ ": " ++ show v instead.

A second trick is that the argument need not be a variable, but it can be a pattern enclosed in parentheses. Thus,
e.g.,

> map (\(a,b) -> (b,a)) [(1,2),(3,4)]
[(2,1),(4,3)]

This facility should be used with caution, as a match failure results in an exception. But (,) has only a single data
constructor, so this pattern should be safe.

Prefix/Infix

The syntax of the λ-calculus consists of application and abstraction. There is no infix notation in the λ-calculus.
But mathematicians use infix notation all the time, and find it to be a considerable convenience. To make this
work, they’ve found three ideas to be useful: precedence, which is to say, which operators are applied first, associa-
tivity, which determines the order of operations of the same precedence, and parentheses, which are used to override
precedence and associativity.

For example, Haskell has the following fixity declarations in the Prelude:

infixl 6 +
infixl 6 -
infixl 7 *
infixl 7 /
infixr 8 ^

Consider the expression
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1 - 2 * 3 ^ 2 ^ 3 / 7 + 1 * 4

The highest fixity operator is (^), and it associates to the right. So the subexpression 3 ^ 2 ^ 2 is grouped first,
as (3 ^ (2 ^ 2)), resulting in

1 - 2 * (3 ^ (2 ^ 3)) / 7 + 1 * 4

We next group the operators at precedence level 7, associating to the left per their fixity declarations:

1 - ((2 * (3 ^ (2 ^ 3))) / 7) + (1 * 4)

Finally, the operators at fixity level 6 are grouped, associating again to the left per their fixity declaration.

((1 - ((2 * (3 ^ (2 ^ 3))) / 7)) + (1 * 4))

At this point the expression is fully parenthesized. Let’s check...

> 1 - 2 * (3 ^ (2 ^ 3)) / 7 + 1 * 4
-1869.5714285714287
> ((1 - ((2 * (3 ^ (2 ^ 3))) / 7)) + (1 * 4))
-1869.5714285714287

Whew!

Note that if operators are given the same precedence, but different associativity, a syntax error can occur, e.g., if we
have declarations and definitions

infixr 4 <+>
infixl 4 <->

(<+>) :: Int -> Int -> Int
(<+>) = (+)

(<->) :: Int -> Int -> Int
(<->) = (-)

i.e., versions of the ordinary addition and subtraction specialized in type to Int -> Int -> Int, and with (non-
standard) precedences and associativity, the expression 1 <+> 2 <-> 3 will result in a parsing error.
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We can build ordinary infix functions out strings built out of most of the non-letter, non-digit characters that
aren’t reserved for some other role: !#$%&*+./<=>?@\^|-~. Most of the short names are already taken, and we’ll
encounter a fair number of these operators in future lectures.

We’ve already seen how an infix operator can be converted into a prefix function by parentheses, e.g., 1 + 2 and
(+) 1 2 are essentially the same. We can do the converse too, converting an ordinary prefix function into an infix
function by surrounding it with back-ticks. Thus, div 10 3 can be written as 10 `div` 3, and this is sometimes
very useful. Ordinary prefix functions can be subject of fixity declarations, e.g., infixl 6 `div`. Note the back-
tics.

Haskell uses both λ-calculus style prefix notation, and ordinary mathematical operators. Understanding how these
mix is crucial. The rule is simple: application binds more tightly than any infix operation. Thus, a precedence
analysis of 1 + div 2 3 + 4 proceeds as follows. First we group the application div 2 3, resulting in

1 + (div 2 3) + 4

The resulting expression has two additions at the top level, and because addition associates to the left, the left most
top level occurrence of + is grouped next,

(1 + (div 2 3)) + 4

As a general rule, you’ll want to avoid the use of unnecessary parentheses, and rely on precedence and associative to
fix the order of operations in a Haskell expression. There are exceptions, but even in exceptional cases, a “parenthesis
light,” if not “parenthesis minimal” style is generally more readable than a “parenthesis heavy” style.

Sections

One of the nice features of Haskell is partial application, where we build a function out of a binary (or higher arity)
function by providing some but not all of the arguments. For example,

> map ((*) 2) [1,2,3,4]
[2,4,6,8]

A problem with this is that it only enables us to provide the first argument. Thus, for example, we can compute 17
modulo various numbers,

> map (mod 17) [1..4]
[0,1,2,1]

but this simple form of partial application doesn’t enable us to fix the second argument, e.g., to compute various
numbers mod 5. Instead, we’d have to do something like this:

47



> map (\x -> mod x 5) [1..5]
[1,2,3,4,0]

Haskell has a simple syntax that makes it easy to build partial applications out of infix binary functions, a remarkably
common case, called sections. Just parenthesize an expression, with one argument omitted, e.g.,

> map (2 *) [1..4]
[2,4,6,8]
> map (`mod` 5) [1..5]
[1,2,3,4,0]

The use of sections provides a very terse solution to the allp problem from a couple of lectures ago,

allp :: [a -> Bool] -> a -> Bool
allp ps a = and $ map ($ a) ps

as we build a section that applies a function to a fixed argument. Sweet!

Compositions, η-reductions, and Point-Free Programming

We will often use the basic machinery provided for us by λ-terms. But Haskell is a language that provides higher-
order abstractions, and in particular allows us to define functions that define functions. Doing so comes with great
advantages: we can eliminate common boilerplate, and instead focus on the parts of the code that vary, the parts that
contain our creative work as programmers.

One such function is composition, which is implemented in Haskell as the (.) operator:

infixr 9 .

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \x -> f (g x)

We can almost show that composition is associative by a sequence of forward and backward substitutions, i.e.,

((f . g) . h) x = (f . g) (h x)
= f (g (h x))
= f ((g . h) x)
= (f . (g . h)) x

48



But this argument isn’t quite as compelling as we’d like. The problem is that we haven’t actually showed that
composition is associative, but rather that it is associative in application. This is a small distinction, but we have to
consider at least the possibility that it is a significant one. To that end, we’ll revisit our discussion of extensionality
from Lecture 2.

We start with a basic question. What does it mean to say that two functions are equal? In classical mathematics,
functions are just sets of ordered pairs, and so the meaning of equality of functions is inherited from the defini-
tion of equality for sets. In particular, if f and g are mathematical functions, such that dom(f) = dom(g), and
∀x ∈ dom(f), f(x) = g(x), then f = g, because these are the same sets. This is sometimes called “equality in
extensionality.”

We’ll adopt the result, if not the argument, to our notion of functions in Haskell: if f x = g x, then f = g, because
they produce the same results when applied to an arbitrary argument, and so are extensionally equal. Note here that
we’re assuming that there are no occurrences x other than the two explicit ones. In the λ-calculus, this is captured
by the idea of η-reduction, which is formally written as

(λx,Mx) .η M

i.e., \x => M x η-reduces to M, so long as x has no free occurrences inM . This justifies a “right cancellation rule”
in equational reasoning, which we can apply to the argument above, obtaining

(f . g) . h = f . (g . h)

the full form of associativity, from the preceding argument.

η-Reduction is often a beneficial transformation, as it eliminates the use of a variable (and so there are fewer local
notions to understand), and as it often results from minor refactorings of the code that result in greater clarity and
flexibility. The introduction of compositions is often a set-up for η-reductions.

For example, let’s revisit a problem from Lecture 2, and write a function that sums the square of the even numbers
that occur in a list. We have

sumOfSquaresOfEvens :: Num n => [n] -> n
sumOfSquaresOfEvens ns = sum (map square (filter even ns))

This hints as the possibility of η-reduction, as there is only a single occurrence of ns on both sides of the equality,
and indeed it is already in the right-most position. The problem is that that this isn’t quite good enough, and as we
need the equations to take the form of a function applied to an argument.

We can rewrite this was the composition three functions (indicated by hyphens below))

sum (map square (filter even ns)) = (sum . map square . filter even) ns
--- ---------- -----------

Thus
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sumOfSquaresOfEvens ns = (sum . map square . filter even) ns

which we η-reduce to

sumOfSquaresOfEvens :: Num n => [n] -> n
sumOfSquaresOfEvens = sum . map square . filter even

This is terse, but easy to understand and modify with practice. Moreover, expressing this as a composition is a kind
of literal factoring of the problem that decomposes the problem into simple, list-based building blocks.

The resulting style of programming is sometimes called point-free, as we’re not defining functions point-wise.

Exercise 5.1 Consider the even predicate:

even :: Integral n => n -> Bool
even n = mod n 2 == 0

It is possible to transform even into a composition of two sections. Do so. This sort of thing is often “encountered in the
wild.”

The descent into silliness

There is a Prelude function flip, defined as follows:

flip :: (a -> b -> c) -> b -> a -> c
flip f b a = f a b

This function is often used when we want to specialize a binary function at its second argument, e.g., rather than
writing (`mod` 3) for the function that computes \x -> mod x 3, we could reason equationally as follows:

\x -> mod x 3
\x -> flip mod 3 x
flip mod 3

using an explicit η-reduction (and the associativity of application) to justify the last step. There’s some danger in a
little knowledge. Using flip (and a few other tricks), we can usually contrive to set up an η-reduction whenever
there is only a single occurrence of inner-most (right-most) bound variable on the right-hand side of a defining
equation. For example, consider the definition of allp that we developed earlier in the lecture:
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allp :: [a -> Bool] -> a -> Bool
allp ps a = and $ map ($ a) ps

There’s only a single a on the right hand side. Can we get at it?

allp ps a = and $ map ($ a) ps
= ($) and (map ($ a) ps)
= ($) and (flip map ps ($ a))
= ($) and (flip map ps (flip ($) a))
= (($) and . flip map ps . flip ($)) a

whence

allp ps = ($) and . flip map ps . flip ($)

And as incomprehensible as this is, we now note that there’s only a single ps on the right hand side, and so we can
indulge in more of the same trickery

allp ps = ($) and . flip map ps . flip ($)
= (.) (($) and) (flip map ps . flip ($))
= (.) (($) and) ((.) (flip map ps) (flip ($)))
= (.) (($) and) (flip (.) (flip ($)) (flip map ps))
= ((.) (($) and) . flip (.) (flip ($)) . flip map) ps

and so

allp :: [a -> Bool] -> a -> Bool
allp = (.) (($) and) . flip (.) (flip ($)) . flip map

This is entirely non-intuitive code, but it works. What is most impressive about this is that we arrived at this form
by a lawful series of code transformations. There is a deep algebraic structure to Haskell code, reflective of its roots
in the λ-calculus. There’s a power here, although whether we use it for good or for evil is entirely up to us.

Oddly enough, (and terrifyingly enough) though, we’re not done. Consider the operator ($), which appears
explicitly as such above.

($) f x = f x
= id f x
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Where id = \x -> x is Haskell’s identity function. We can η-reduce this last equation, twice!, resulting in ($) = id.
This enable us to rewrite the code above as

allp = (.) (($) and) . flip (.) (flip ($)) . flip map
= (.) (id and) . flip (.) (flip id) . flip map
= (.) and . flip (.) (flip id) . flip map

Next, we can reintroduce sections to eliminate both (.) and flip (.) as follows:

allp = (.) and . flip (.) (flip id) . flip map
= (and .) . (. (flip id)) . flip map

At this point, we note that

flip id x y = id y x
= y x

So that flip id is just application written backwards! Naturally enough, this comes up in practice, and a bit of
searching reveals the (&) operator in Data.Function as reverse application. Thus:

import Data.Function

allp :: [a -> Bool] -> a -> Bool
allp = (and .) . (. (&)) . flip map

It may not be comprehensible, but at the end of a shock-and-awe series of transformations, we’re left with code that
has a zen succinctness.

Exercise 5.2 Our starting point,

allp ps a = and $ map ($ a) ps

did us no particular favors. Give a slightly simpler derivation of the final form of allp based on

allp ps a = and (map ($ a) ps)

There’s no point titrating crazy

As wild as this is, we’re not done yet. Let’s go back to our original definition of allp:
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allp :: [a -> Bool] -> a -> Bool
allp ps a = and $ map ($ a) ps

What made the analysis above tricky is that we began our attempt to produce a point-free definition by using an
η-reduction to eliminate a. But this is hard, since a is buried in the right hand side. It would be much easier to
eliminate ps from the right hand side. So let’s expose it on the left!

flip allp a ps = and (map ($ a) ps)

This creates a problem for us, as we’ll have to some how eliminate the flip on the left, but let’s suspend disbelief
and carry on...

flip allp a ps = (and . (map ($ a)) ps

which we η-reduce

flip allp a = and . (map ($ a))

At this point, we can rely on the analysis above, which showed

($ a) = (&) a

and so

flip allp a = and . (map ((&) a))
= (.) and (map ((&) a))
= ((.) and . map . (&)) a

which we immediately η-reduce to

flip allp = (.) and . map . (&)
= (and .) . map . (&)

But what do we do with about the flip? Intuitively, we should just flip it back!, which we can justify by the
reasoning
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flip (flip f) x y = (flip f) y x
= flip f y x
= f x y

So

allp = flip $ (and .) . map . (&)

Oddly enough, if you think this through, it makes sense!
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Chapter 6

Type Classes

Haskell, as a programming language, has a somewhat unusual history. Most programming language designs are
driven by small groups, or even single individuals, at their formative stages, and driven by a fairly focused set of
computational problems. Lisp was driven by John McCarthy’s misunderstandings of Church’s λ-calculus, and his
desire for a programming language in which programs could naturally be represented as data objects in the language.
FORTRAN was developed by a small team of programming language experts at IBM working under the direction
of John Backus, and focussed on scientific computing. COBOL was largely the work of Admiral Grace Mary
Hopper, and was driven by the data processing needs (at the time, mostly business/logistical needs) of the US Navy.
SNOBOL was largely the work of Ralph Griswold, and was intended to facilitate quick-and-dirty manipulations of
string data, much as Larry Wall’s Perl does today. And so it goes.

There have been a few languages that were designed by committees, and even fewer of these that have been successful.
Algol 60 and Haskell are exemplars. In the case of Haskell, there were a large number of programming researchers
in the early 1980’s all working on the problem of lazy evaluation, and they each tended to have their own language,
a few of which are still in use. A very real problem was that none of these languages was gaining the kind of wide-
spread adoption necessary to gain attention outside of a relatively narrow set of programming language specialists.
And so the process that lead to Haskell was driven by a desire to create a shared language that would attract a critical
mass of users, and moreover, which would allow a direct comparison of some of the implementation ideas then
current. And so a Haskell committee was formed to create a common tongue for this work.

There is an excellent history of Haskell, A History of Haskell: Being Lazy With Class that was written by a few
core committee members.

One of the goals of the project was a fairly conservative design, which relied on well-tested ideas. Type classes,
which are widely viewed as one of the most distinctive and interesting aspects of Haskell’s design, represented an
almost casual breach of this goal! The basic design came out of a conversation between Phil Wadler and Joe Fasel,
as a way of dealing with the problem of numeric types and operator overloading. Wadler suggested the addition
of type classes in an email message to the committee’s email list, and which adopted it without much discussion or
reflection. Amazing!
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Defining and Instantiating Type Classes

Type classes are defined by the class keyword, and consist of a sequence of declarations, associated with optional
default implementations. E.g., the Eq type class is defined as follows:

class Eq a where
(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)

In this definition, the variable a represents the type of an instance of the Eq class. Instances of Eq are required to
provide both the (==) and (/=) functions. This type class definition also includes default definitions for the two
operators, which have the effect that a programmer needs only provide an instance of (==) or of (/=). If one of
the definitions is omitted, the default definition will be used instead.

For example, let’s consider a simple key-value pair,

data Entry = Entry String String -- key, value

as might be used in a dictionary. We can make Entry an instance of Eq by providing an instance definition, e.g.,

instance Eq Entry where
Entry key1 value1 == Entry key2 value2 = key1 == key2 && value1 == value2

In this case, the omitted definition will be provided by default.

Haskell also allows for deriving instances, which allow type class instances to propagate through type hierarchies,
e.g.,

data Pair a b = Pair a b

instance (Eq a, Eq b) => Eq (Pair a b) where
Pair a1 b1 == Pair a2 b2 = a1 == a2 && b1 == b2

A similar idea allows Haskell to derive the Eq type class for a new ADT whenever the constituent types are also
instances of Eq, and we can invoke this automatic machinery by the deriving clause in the definition of an ADT.

Part of what makes type classes interesting in Haskell is both the analogy and dis-analogywith the classes of (probably
more familiar) object-oriented language. In both cases, we’re providing a common vocabulary and somewhat similar
type checking behavior, and so the programming use cases are often remarkably similar. But there is an important
difference: Typical object-oriented languages rely on run-time (dynamic) selection of code that corresponds to a
particular member/message, typically through pointers, stored in the object itself, to type-specific dispatch tables.
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Haskell is able to use its static type analysis to select the appropriate instance at compile time, saving itself both time
and space at runtime.

A Few Standard Type Classes

Eq

As we’ve just seen, Eq is a type class which includes types with a meaningful notion of equality.

Type classes interact with the type system via constraints on the types of free variables in a type expression. For
example, consider the Data.List function elem, which determines whether a value occurs in a list:

> 3 `elem` [1,2,3,2,3,4]
True

It’s easy to implement elem via a natural recursion:

elem _ [] = False
elem x (a:as)

| x == a = True
| otherwise = elem x as

or, more concisely

elem _ [] = False
elem x (a:as) = (x == a) || elem x as

relying on the left-biased definition of (|)|.

It should be clear that the definition of elem relies on the list elements supporting an equality test, and this reflected
in the type of elem, via a type constraint:

elem :: Eq a => a -> [a] -> Bool

In recent versions of Haskell, elem has an even more general type, which we’ll get to later in the lecture.

Ord

Haskell’s Prelude defines an Ord type class:
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class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a

...

The documentation (cf. Data.Ord on Hackage) identifies compare as a minimal complete definition, meaning that
default implementations are set up in a way such that all other type class functions have default definitions that are
ultimately grounded in compare. Minimal complete definitions need not be unique, although setting up multiple
minimal complete definitions is tricky. Note that <= is also minimally complete for Ord.

This definition comes with a constraint: All instances of type class Ord must also be instances of type class Eq.

Exercise 6.1 Read the documentation on Ord, and then provide a parsimonious instance of Ord for suitably type-constrained
instances of Pair.

Number Types

Numeric types are described by the Num class, as we’ve seen before.

class Num a where
(+), (-), (*) :: a -> a -> a

negate :: a -> a
abs :: a -> a
signum :: a -> a

...

Num is the basis of a hierarchy of various numeric types. For example, Int and Integer are instances of the Integral
subclass of Num, and Float and Double are instances of the Fractional subclass of Num.

We will not delve much into this numerical tower, but you can learn more by reading the documentation, this
tutorial, or by using the :info command in ghci to poke around:

> :info Num
...

> :info Fractional
...
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> :info Int
...

Enum

Haskell provides concise syntax for enumerating values of enumerable types:

> [1..10]
[1,2,3,4,5,6,7,8,9,10]

> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"

> [2,4..10]
[2,4,6,8,10]

> ['a','e'..'u']
"aeimqu"

The Enum type class describes types that can be enumerated (i.e. indexed from 0 to n-1):

class Enum a where
toEnum :: Int -> a
fromEnum :: a -> Int
...

Show

The Show class describes types whose values can be converted to Strings:

class Show a where
show :: a -> String
...

As we have seen, Haskell can auto-generate Show instances:

data Pair x y = Pair x y
deriving (Eq, Show)
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> Pair "Hello" 161
Pair "Hello" 161

Exercise 6.2 Instead of deriving the default Show instance for Pair, define one that produces the following:

> Pair "Hello" 161
( "Hello" , 161 )

Read

The Read class is complementary to Show:

class Read a where
...

read :: Read a => String -> a

The read function parses a String to produce a value of the given type. Together, reading and showing values allow
programs to interact with the outside world (e.g. Strings from user input, the file system, and network requests).
We will have much more to say about parsing and the outside world later.

Foldable

The Foldable type class is interesting, and it has an interesting history. Let’s consider []. We know that [] has two
data constructors, [] and (:). We can define a list function by a recursion on this type, which typically involves a
definition like the one we gave for enum earlier in the lecture:

-- | A predicate for list membership

elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem x (a:as)

| x == a = True
| otherwise = elem x as

Historically, one of the significant list-based functions was foldr, which we can think of as a function for defining
functions by recursion over lists:
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foldr :: (a -> b -> b) -> b -> [a] -> b
foldr combine base [] = base
foldr combine base (c:cs) = combine c (foldr combine base cs)

We can then reimplement many of our list based functions in terms of calls to foldr, thinking of it as a function
that takes two arguments and produces a function as a result, e.g.,

sum :: Num n => [n] -> n
sum = foldr (+) 0

product :: Num n => [n] -> n
product = foldr (*) 1

Or even

elem :: Eq a => a -> [a] -> Bool
elem a = foldr (\c cs -> a == c || cs) False

Having written this, the code fairy (we’ll get to know the code fairy and her ways through the rest of this course),
taps imperiously on our shoulder. Since I know her, I know that she’s telling me that we can do better. Indeed, we
can:

\c cs -> a == c || cs = \c cs -> (||) (a == c) cs
= \c -> (||) (a == c)
= \c -> (||) ((a ==) c)
= \c -> ((||) . (a ==)) c
= (||) . (a ==)

so

elem a = foldr ((||) . (a ==)) False

We’ll pass on eliminating the a.

The revelation comes from the observation that there are other data types we might want to fold into a single
summary value. A good example is kind of binary tree that holds its values at its inner nodes:

data BinaryTree a
= EmptyTree
| Node a (BinaryTree a) (BinaryTree a) -- value leftChild rightChild
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deriving (Show)

We can think of a binary tree as consisting of a sequence of values, ordered in infix, i.e., where all of the values in the
left child of a node come before the value it carries, and these are followed by the values held by the right children.
We can made this explicit via a function that produces a list with this order, i.e.,

visit :: BinaryTree a -> [a]
visit EmptyTree = []
visit (Node a left right) = visit left ++ [a] ++ visit right

Thus, for example if we convert the following

into a BinaryTree

tree :: BinaryTree Integer
tree = Node 3

(Node 1
(Node 0 EmptyTree EmptyTree)
(Node 2 EmptyTree EmptyTree))

(Node 5
(Node 4 EmptyTree EmptyTree)
(Node 6 EmptyTree EmptyTree))

We’d have

> visit tree
[0,1,2,3,4,5,6]

as expected.

Interestingly enough, we can implement foldr for BinaryTree as well, but managing the traversal is more subtle.
The definition for traversing the EmptyTree is straightforward:

foldr :: (a -> b -> b) -> b -> BinaryTree a -> b
foldr combiner base EmptyTree = base
foldr combiner base (Node a left right) = ?
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The definition for a Node is trickier. It’s natural to begin by calling foldr combiner base recursively on left. The
conceptual problem is that when we’re done with left, we don’t want to end with base, but instead the result of
processing the rest of the tree, i.e., a and right. But we can do this! Thus,

foldr combiner base (Node a left right) =
foldr combiner (combiner a (foldr combiner base right)) left

And this completes the definition. With this, we can define

visit :: BinaryTree a -> [a]
visit = foldr (:) []

Indeed, even this isn’t necessary. If we read the definition of Foldable more closely, we’ll discover the toList
function, which is simply a polymorphic version of visit which we don’t have to write.

Exercise 6.3 Write a reverseTree function for BinaryTree a which creates a mirror-image of the original tree, and
verify that

> toList (reverseTree tree) == reverse (toList tree)
True

Note that the toList function is not in the Prelude, but it is in Data.Foldable, and so you’ll need to either

import Data.Foldable

in your source, or

> :m +Data.Foldable

in ghci.
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Chapter 7

A Brief Introduction to Haskell I/O

So far, we’ve lived in the interpreter, and built little snippets of code. This is useful, but it limits the mode of
interaction. Programs intended for end-users (often ourselves) often want more control over how they interact with
the user. Moreover, programs intended for end users present themselves as complete—we don’t want Grandma to
have to install ghc and master Haskell to enjoy the fruits of our labors this quarter.

This will, of present necessity, be a very incomplete introduction. A thorough understanding of Haskell I/O will
come later. Mimicry and practice though can form a foundation for later understanding, so I’m asking you to
suspend disbelief for a bit. It’s time to get on the bike, to start pedaling, and to believe that when Dad lets go, you’ll
keep going.

Output

So let’s start with the old ”Hello, world!” chestnut:

module Main where

main :: IO ()
main = do

putStrLn "Hello, world!"

We’ll ignore the actual content of the file for just a bit. Let’s suppose we put this in a file called hello.hs. We can
produce an executable (binary) file by compiling this using ghc (not ghci):

$ ghc hello.hs
[1 of 1] Compiling Main ( Hello.hs, Hello.o )
Linking hello ...
$ ./hello
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Hello, world!
$

If we’re clever enough to have a ~/bin directory, and to have it on our PATH, we can simplify this further:

$ cp hello ~/bin/hello
$ hello
Hello, world!
$

This is good enough for simple programs, but more complicated situations (including where there’s non-trivial
configuration and/or testing involved) are better handled through cabal (or stack), as you’ll be learning in the
lab.

There’s a fair bit to explain here, and actually a fair bit that isn’t necessary for this program, but will be essential
soon enough.

We’ll start at the top. Haskell programs are typically divided into modules. A module is a related collection of
declarations and definitions. Modules have simple alphanumeric names, and may be structured hierarchically, using
the period (.) symbol as a separator. The declaration

module Main where

indicates that the code in this file will be in the Main module. Evaluation of compiled code is driven by performing
the IO action main from the Main module.

Next, we have the type declaration main :: IO (). This looks odd, a bit of advanced technology indistinguishable
from magic. It will seem less magical in time. Types of the form IO a are IO actions, which when performed return
a value of type a. The type () is Haskell’s unit type, which contains a single defined value, also denoted by (), as
we’ve seen before. We use () as a simple, concrete, placeholder in situations where Haskell requires a type, but we
don’t aren’t going to do anything subsequently that discriminates between values of that type.

The definition of main consists of a do construct, which is used to combine a sequence of IO actions into a single
IO action. In this case, there is only one action, so we could get by without the do-wrapping, i.e.

main = putStrLn "Hello, world!"

but that doesn’t generalize to the more complicated examples we’re going to see soon, and it’s often useful to use a
do to sequence a single IO action, when we expect that we may be adding other IO actions to the sequence later.

Finally, putStrLn :: String -> IO () is a function that takes a String as an argument, and produces as a value
an IO action, which when performed prints its argument to the standard output. Note here that we’ve been carefully
using separate words: an expression may have a value in IO a, but evaluation doesn’t cause an IO action to be
performed. Only performing it does. The following code may make the distinction a bit clearer:
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module Main where

naNaNaNa :: IO ()
naNaNaNa = putStrLn "Na, na, na, na"

heyHeyGoodbye :: IO ()
heyHeyGoodbye = putStrLn "Hey, hey, Goodbye!"

main :: IO ()
main = do

naNaNaNa
naNaNaNa
heyHeyGoodbye

We define several IO actions here, notably naNaNaNa and heyHeyGoodbye. Defining these values doesn’t cause the
IO actions they describe to be performed, but when main itself is performed, they in turn are performed. This
seems clear enough when these IO actions are defined globally, but the same holds true if they are defined locally,
e.g.,

module Main where

main :: IO ()
main = do

let naNaNaNa = putStrLn "Na, na, na, na"
heyHeyGoodbye = putStrLn "Hey, hey, Goodbye!"

naNaNaNa
naNaNaNa
heyHeyGoodbye

The output is as before:

$ ./goodbye
Na, na, na, na
Na, na, na, na
Hey, hey, Goodbye!
$

Defining is not performing. Performing is performing. Note here that top-level let bindings within a do have
a scope that consists of the binding (allowing mutually recursive definitions) and the rest of the do body, so the
keyword in is not used, and a level of indentation is saved. Note (as here) that a single let may be used to define
multiple names. This may ring a bell—we don’t use the in keyword when binding values in the interprester. This
isn’t different: for all practical purposes, the interpreter’s read loop is the body of a do block in the IO context.
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Input

We’ve learned how to use putStrLn to produce output, and you’ll not be surprised to learn that there are many
more output-oriented functions in Haskell, or that we’ll encounter some of them later, but putStrLn is enough to
get us started on output. But what about input?

The complement to putStrLn is getLine :: IO String, a function that reads a line of text from standard input
(for now, the terminal), up to the next newline or the EOF (end-of-file), and returns a String value (conveniently
omitting the newline).

module Main where

main :: IO ()
main = do

putStrLn "Hello. I am a HAL 9000 series computer."
putStrLn "Who are you?"
name <- getLine
putStrLn ("Good morning, " ++ name ++ ".")

Note the binding syntax here, in which an IO action is performed, and the value it returns is bound to a variable (in
this case, name). People learning Haskell often struggle at first with the distinction between let and <-, in that both
bind names, and so seem to do similar things. The difference is that with a let, the defining expressing is evaluated,
and the name is bound to the resulting value; whereas, with a binding, the expression is performed, and the name is
bound to the result returned by the action.

One bit of trickiness is in the final line, where we concatenate several strings together using the (++) operator,
and apply putStrLn to the result. It’s good Haskell style to omit unnecessary parenthesis, and this often tempts
beginners into dropping them from the last line,

putStrLn 'Good morning, ' ++ name ++ '.'

This unfortunately doesn’t work, because function application binds more tightly than application, so the syntax
says to apply the function putStrLn to the string "Good morning, ", and then to use (++) to combine the result
(of type IO ()) with name, which has type String. The resulting error message says this, but it’s a bit intimidating
at first. Experienced Haskell programmers will often use the ($) form of application here::

putStrLn $ "Good morning, " ++ name ++ "."

which also supports a nice syntax when things get long, as they sometimes do:

putStrLn $ "Good morning, "
++ name
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++ "."

This program runs pretty much as any Space Odyssey aficionado would anticipate:

$ ./hal
Hello. I am a HAL 9000 series computer.
Who are you?
\emph{Dave}
Good morning, Dave.
$

Of course, input is available from places other than standard input, e.g., the command line, files, network sockets,
and the environment. The latter is a simple key-value list associated with each process, and is typically used for
communication between processes. One of the environment variables is USER, which is initialized by the log-in
process to contain the account name, often the user’s personal name. We can easily rewrite this program so that it
uses the USER environment variable, rather than interrogating the user:

module Main where

import System.Environment

main :: IO ()
main = do

putStrLn "Hello. I am a HAL 9000 series computer."
name <- getEnv "USER"
putStrLn $ "Good morning, " ++ name ++ "."

Here, we’ve used the function getEnv :: String -> IO String, which takes a key as argument, and when
performed returns the corresponding value. An addition bit of complexity comes from the fact that getEnv isn’t
exported by the standard Haskell Prelude, but instead is exported by the System.Environment module, which
we import here.

$ ./hal
Hello. I am a HAL 9000 series computer.
Good morning, stuart.
$

OK, this is hitting a little too close to home.

Exercise 7.1 Modify the second (getEnv-based) hal program so that it capitalizes the user’s name in greeting them. Com-
pile and run your program, and provide a sample interaction. You may find the function Data.Char.toUpper to be
helpful.
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Before moving on, note that Windows, as is so often the case, gratuitously varies from the standards it co-opts, and
uses USERNAME instead. Caveat emptor. We could easily re-write this example so that it worked with Windows, but
we might like to write a portable version that can deal with either convention. This turns out to be more difficult
than we might expect, and we’ll need to develop some new tools first.

The Read and Show type classes.

So far, we’ve dealt with simple problems of IO, in particular, sending strings to standard output, and retrieving
them from standard input. But Haskell is a type-strict language, and this raises the question of how do we get
other kinds of information in and out of our program. To that end, Haskell’s Show and Read type classes are very
convenient. Most of the types exported by the Prelude have both Read and Show instances, and Haskell supports
derived instances of both, using the same syntax as Haskell programs.

Consider a simple program that generates binomial coefficients:

module Main where

import System.Environment

binomial :: Int -> [Integer]
binomial n

| n > 0 = let bs = binomial (n-1) in zipWith (+) ([0]++bs) (bs++[0])
| n == 0 = [1]
| otherwise = error "domain error: negative argument to binomial"

main :: IO ()
main = do

[nstr] <- getArgs
putStrLn . unwords . map show . binomial . read $ nstr

The particular algorithm whereby we compute lists of binomial coefficients isn’t important here—but if you’re
familiar with Pascal’s triangle, you should be able to see it here. Our current concern is the content of main, which
includes IO actions, read, and show.

We start with

[nstr] <- getArgs

Which reads the command line arguments (not including the program name), and assuming that there is just one,
binds it to the variable nstr :: String. The composition

putStrLn . unwords . map show . binomial . read

69



uses read to convert a String to an Int, then uses the binomial function to produce an [Integer]. We map
show across this, resulting in an [String]. These strings are concatenated together, with separating spaces, us-
ing the Prelude function unwords :: [String] -> String, and finally, the resulting string is the argument to
putStrLn, creating an IO (), which when performed, produced the desired output:

$ ./binomial 6
1 6 15 20 15 6 1
$

Let’s focus first on the wonderful and seemly mysterious read :: Read a => String -> a. Students familiar
with other programming languages and their conventions might be a bit perplexed here. How does the com-
piler know what type read is supposed to return, if it always takes the same type of argument? But this in-
volves projecting an understanding of overloading and type resolution (as is done in more traditional program-
ming languages like C++ and Java) onto Haskell, and that’s a mistake. Haskell’s type inference can consider the
return type, as well as the argument types, and since we’re composing read :: Read s => String -> s with
binomial :: Int -> Integer, the fully grounded type of read in this context must be String -> Int, and
this allows Haskell to select the correct instance of Read in binding read. Trust me, you’ll come to rely on this,
and you’ll miss it in other languages.

Note here that our error-handling strategy is naïve, and there are lots of things that can go wrong at runtime: there
might be too many command line arguments, or too few. The argument may not have the format of an Integer,
or it might have the format of a negative integer. We’ll learn how to avoid and/or handle such errors later, but for
now, they’ll raise an uncaught exception, and terminate the program with an error. Still, it’s better to crash and
burn visibly than to silently produce nonsense.

Best Coding Practice and Complex Contexts

The binomial program introduces an important idea. IO code is different from ordinary, “pure” code: it is more
difficult to reason about, andmore difficult to test. Therefore, wewant to structure our code so as tomove complexity
out of IO code. Introducing binomial as a separate function, outside of the IO context, renders the hard core of
the program in pure code, simplifying reasoning, testing, and debugging.

Part of the distinctive character of programming in Haskell comes from this split, and it really is a good-news/bad-
news deal for the programmer. The good news is that you can really put your algebraic thinking hat on, and perform
some nifty transformations that increase readability, concision, and efficiency, with confidence, when dealing with
pure code. The bad news is that there are times when a real-world programmer wants to sprinkle some IO in the
middle of what is otherwise pure code, e.g., to facilitate ”wolf-fence” debugging. The division between pure and
impure code in Haskell makes it impossible to do this without dragging the code in question into the impure world,
conceding the very advantages we worked so hard to obtain.

As is so often the case in Haskell, IO contexts are a special case of a much more general phenomenon. We can
imagine the existence of other kinds of other contexts m, and the general problem of writing functions of the form
g :: m a -> m b. In such circumstances, it is often possible to write a function f :: a -> b, and then to some-
how lift f into a m’s context. Lest this seem hopeless abstract, review our binomial program again, where the
function binomial is pure, and is subsequently employed at the core of main, which lives in the IO context. This
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exemplifies a simple, yet profound, engineering reality: the easiest and most elegant way to build reliable systems is
by composing reliable components.

Haskell encourages this kind of factoring, and Haskell programmers look for opportunities to refactor their code as
much as possible along a pure/lift axis. Look for it. Expect it. Do it.

Exercise 7.2 Read the Rot-13 chapter (Chapter 8), and do the exercises there.
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Chapter 8

Case Study: Rot-13

Our next program is a simple filter, not in the Haskell sense, but in the Unix sense of a program that reads from
standard input, and writes to standard output.

In the days before Facebook and blogs, there was a distributed netnews system that consisted of a large collection of
newsgroups. The most popular of these newsgroups, was “rec.humor.funny.” This was a moderated news group,
which sent out a few jokes every day, most of which were indeed funny. But humor is a tricky thing, and some
humor can cause offense. So the moderator adopted a simple strategy. Jokes that were potentially offensive were
rot-13’d, i.e., the characters were remapped so that ’a’ → ’n’, ’b’ → ’o’, etc. People who wanted to read possibly
offensive jokes would then rot-13 it again (since there are 26 letters, rotating twice by 13 takes you back to where
you started). What made this work was that people were clearly warned that rot-13’ing was at your own risk. The
social contract was that if you rot-13’ed, you surrendered the right to complain.

Let’s start by thinking about this as a problem in pure code. How do we rot-13 a character? For the sake of
simplicity, we’ll assume that the underlying text is drawn from the ASCII subset of Unicode.

import Data.Char

rotChar :: Char -> Char
rotChar c

| isLower c = chr (ord 'a' + (ord c - ord 'a' + 13) `mod` 26)
| isUpper c = chr (ord 'A' + (ord c - ord 'A' + 13) `mod` 26)
| otherwise = c

This code uses the functions chr :: Int -> Char and ord :: Char -> Int from Data.Char, which translate
between Unicode characters and their associated Int code points, and relies on the fact that the each case of letters
is associated with an ascending, sequential set of code points. This is true of ASCII, but is not true of all character
encodings. One minor mystery in the code has to do with the relative precedences of + and `mod`. Intuitively,
`mod` is related to division, and so might be assumed to have the same precedence as *, /, etc. This is indeed so,
and can be checked using the :i (info) command in ghci:
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Prelude> :i mod
class (Real a, Enum a) => Integral a where
...
mod :: a -> a -> a
...
-- Defined in GHC.Real

infixl 7 mod
Prelude> :i (*)
class Num a where
...
(*) :: a -> a -> a
...
-- Defined in `GHC.Num'

infixl 7 *
Prelude>

Here we see that mod, when used as an infix operator, associates to the left and at precedence level 7, which is exactly
the same as * and its friends.

There are programmers (and sometimes I’m one) who would complain about the duplication of code in rotChar.
We can easily eliminate the duplication by introducing a helper function, which is built out of the duplicated code,
and abstracts out the part that varies:

rotChar :: Char -> Char
rotChar c

| isLower c = rotCase 'a' c
| isUpper c = rotCase 'A' c
| otherwise = c

rotCase :: Char -> Char -> Char
rotCase base char = chr (ord base + (ord char - ord base + 13) `mod` 26)

But our problem wasn’t to rotate individual characters, it was to rotate the entire input String. We need to lift the
function

rotChar :: Char -> Char

to the function

rot :: String -> String

This is ridiculously easy, remembering that String is a synonym for [Char].
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rot :: String -> String
rot = map rotChar

Indeed, we’ll soon enough come to understand map in exactly these terms—as a particular instance of a generalized
”lifting” function.

At this point, it makes sense to revisit our use of local definitions. The function that we care about is rot—the
functions rotChar and rotCase are simply there to help us define rot. It makes sense to tidy our namespace up a
bit, and encapsulate the definitions of these helper functions within the definition of rot:

rot :: String -> String
rot = map rotChar where

rotChar c
| isLower c = rotCase 'a' c
| isUpper c = rotCase 'A' c
| otherwise = c

rotCase base char = chr (ord base + (ord char - ord base + 13) `mod` 26)

Our full program is now

module Main where

import Data.Char

rot :: String -> String
rot = map rotChar where

rotChar c
| isLower c = rotCase 'a' c
| isUpper c = rotCase 'A' c
| otherwise = c

rotCase base c = chr (ord base + (ord c - ord base + 13) `mod` 26)

main :: IO ()
main = do

input <- getContents
putStr $ rot input

The function getContents :: IO String is an IO action that packages the program’s standard input stream as
a Haskell String. The function putStr writes a String to standard output, but without a terminating newline.
In this case, the desired terminating newline would have been present in the input stream, and would have survived
our mapping, so there’s no need to add another.

We can now test this, and what better input source than our source?!

74



$ ./rot < rot.hs
zbqhyr Znva jurer

vzcbeg Qngn.Pune

ebg :: Fgevat -> Fgevat
ebg = znc ebgPune jurer

ebgPune p
| vfYbjre p = ebgPnfr 'n' p
| vfHccre p = ebgPnfr 'N' p
| bgurejvfr = p

ebgPnfr onfr p = pue (beq onfr + (beq p - beq onfr + 13) `zbq` 26)

znva :: VB ()
znva = qb

vachg <- trgPbagragf
chgFge $ ebg vachg

Hopefully, this makes less sense to you than the cleartext version. Anyway, if we rot twice, we get back to where
we started.

Let’s play with this just a bit more. Suppose we want to implement other ciphers. For example, the Caesar cipher
is rot 3, and would be decoded by rot 23 (or rot -3!).

To do this in a uniform way, we’ll design our program so that if it is called without any command-line arguments,
it does a standard rot-13, but if a single command-line argument is provided, it will be interpreted as an integer that
gives the desired rotation. This exemplifies the design pattern of making the common case (rot-13) simple.

To do this, we’ll use a case to pattern match on the result of performing getArgs:

module Main where

import ...

rot :: Int -> String -> String
rot n = ...

main :: IO ()
main = do

args <- getArgs
case args of

[] -> ...
[x] -> ...
_ -> ...
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If there are no arguments, we want to write read standard input as a string, rotate it by the default of 13, and write
the rotated string to standard output:

[] -> do
input <- getContents
let output = rot 13 input
putStr output

Let’s step through this. Since we’re doing IO, we know that the expressions in the do construct must be IO actions,
so the alternatives of the case must also be IO actions. We’ll usually need to combine several distinct IO actions
(reading from standard input, writing to standard output) into a single IO action, hence the inner do’s. We read
standard input by the IO action getContents :: IO String, which when performed, returns the contents of
standard input as a String. Next, we see the use of a let to bind the result of a pure computation. Finally, we
write the resulting output string to standard out using putStr :: String -> IO ().

On to the second case... . A first cut at this might look like this:

[x] -> do
input <- getContents
let output = rot (read x) input
putStr output

There’s one thing to be grumpy about here, and one really big thing to worry about.

We’re grumpy, of course, about the code duplication between these two cases. Let’s identify a common abstraction
and eliminate the code duplication:

rotStdin :: Int -> IO ()
rotStdin n = do

input <- getContents
let output = rot n input
putStr output

main :: IO ()
main = do

args <- getArgs
case args of

[] -> rotStdin 13
[x] -> rotStdin (read x)
_ -> ...

The thing to worry about is the wonderful world of user error. The code as written makes a call to read on
unchecked user input. What if the user (maybe ourselves, in a few months), supplies an invalid argument? Let’s
test...
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$ ./rot foo < rot.hs
rot: Prelude.read: no parse
$

Grandma is not going to be pleased. What’s happened here is that read wasn’t able to make sense of "foo" as the
representation of an Int, so it gave up, and threw an exception. That exception wasn’t caught by our code, but instead
by the runtime system, which simply printed a user error, and terminated the program. In a sense, we’re going to
have to do much the same, but maybe we can print a more informative error. The question is how. We have two
plausible approaches: (1) catch the exception that read throws ourselves, or (2) preflight the argument, making sure
that it’s in a form that read can correctly handle. It turns out that catching the exception is a bit complicated (we
don’t actually cover exceptions in this course...), so we’ll preflight. An initial attempt might be:

import System.Exit
...

[x]
| all isDigit x -> rotStdin (read x)
| otherwise -> do

progname <- getProgName
hPutStrLn stderr $ "usage: " ++ progname ++ " [n]"
exitWith $ ExitFailure 255

Let’s step through this, before we rip it apart. The all :: (a -> Bool) -> [a] -> Bool function is defined in
the Prelude, and it simply makes sure that every element of its argument list satisfies the argument predicate. So
we’re checking to make sure we have a sequence of digits. If the preflight passes, we’ll do the read, otherwise, we’ll
print an error message and terminate program execution in the Unix standard way: printing a usage message that
includes our program name, and terminating with an error code.

Looking ahead a bit, we’ll see that the last case is going to look a lot like the first, so let’s abstract out the usage
action, and finish up main:

usage :: IO ()
usage = do

progname <- getProgName
hPutStrLn stderr $ "usage: " ++ progname ++ " [n]"
exitWith $ ExitFailure 255

main :: IO ()
main = do

args <- getArgs
case args of

[] -> rotStdin 13
[x]
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| all isDigit x -> rotStdin (read x)
| otherwise -> usage

_ -> usage

At this point, we’re pretty close to being done, but there are a couple of issues, both related to the preflighting of
read.

The first is that our preflighting isn’t quite strong enough, although the problematic case is unlikely to arise by
accident:

$ ./rot "" < rot.hs
rot: Prelude.read: no parse
$

Maybe you didn’t see that one coming: an empty command line argument, as distinct from an omitted argument.
We can deal with that by tightening up the test:

| x /= "" && all isDigit x -> rotStdin (read x)

The next is to notice that it would be really nice to be able to accept a leading minus sign, because then we could
decode rot 4 with rot -4. We can do this naïvely, e.g.,

validateInt :: String -> Bool
validateInt "" = False
validateInt "-" = False
validateInt (c:cs) = (isDigit c || c == '-') && all isDigit cs

...

| validateInt x -> rotStdin (read x)

or, we make use of one of Haskell’s regular expression libraries:

import Text.Regex.Posix

...

main :: IO ()
main = do

args <- getArgs
case args of

[] -> rotStdin 13
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[x]
| x =~ "^-?[0-9]+$" -> rotStdin (read x)
| otherwise -> usage

_ -> usage

Note that the =~ operator has a lot of potential return types, and here we’re using it in a context where its return
type is Bool, in which case, s =~ pat will be True when the String s matches the regular expression pat, i.e.,
contains a matching substring. In this case, the regular expression matches strings that consist of the beginning of
string anchor (^), a optional minus sign (-?), followed by one or more digits ([0-9]+), followed by the end of string
anchor ($). The presence of the anchors forces the match of the entire string, and not merely a substring thereof.

Finally, it might occur to us that writing IO actions that filter stdin via some function to stdout is a pretty common
case, and perhaps there is an easier way. And of course, there is, interact :: (String -> String) -> IO ().

rotStdin :: Int -> IO ()
rotStdin n = interact (rot n)

whence

rotStdin = interact . rot

Exercise 8.1 Complete the implementation of rot, compile, and run ./rot 3 < rot.hs. While you’re at it, deal in
a principled way with input texts that don’t consist solely of ASCII characters by exiting with an error. Turn in your
program, both in cleartext and in cyphertext.

The Vigenère cipher

The simple rot ciphers are good enough to hide messages from people who don’t want to read them—which was
kind of the point to rot-13—but they’re trivial to crack as there are only 25 viable keys. A simple modification
to the Caesar cipher is the Vigenère cipher, which uses as password to describe a sequence of rotations, and then
enciphers a message by rotating through the sequence.

For example, if we encrypt the sentence ”Haskell is fun!” using the password ”stuart” we’d get ”Ztmkved cs ymg!”
Ymg indeed!

Exercise 8.2 Extend the functionality of your rot program by implementing the Vigenère cipher. You should use the
Vigenère cipher if your program is passed an argument that consists of a password, i.e., a non-empty sequence of lower-case
letters. You should enable decryption through the use of an optional minus prefix on the password. Aim for elegance, which
includes avoiding code duplication.
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Chapter 9

A Few More Things to Comprehend
(Chapter with contributions from RC)

To wrap up ”Part 1” of the course, we will take a look at three more features in Haskell that often come in handy:
records, newtype, and list comprehensions.

9.1 Records

Data constructors (and tuples) can have many component values. Consider the following:

data Person
= Student String String String String Int [(String, (Int, Int))]
| Teacher String String String [(Int, Int)]

The intention of Student is to carry a first name, last name, identification string, major (i.e. home department),
College year, and list of enrolled courses. A course comprises a department, course number, and section. The
intention of Teacher is to carry a first name, last name, home department, and list of courses (within the department)
currently being taught.

A couple aspects of this datatype definition are not ideal. First, it is easy to confuse which components of the data
values are meant to represent what. Second, we may have to write tedious pattern matching functions to extract
components from Person values, such as the following:

lastName :: Person -> String
lastName (Student _ last _ _ _ _) = last
lastName (Teacher _ last _ _) = last

What are we to do? For the former concern, one option is to write comments to declare our intentions (we should
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be doing this anyway!). Another is to introduce type aliases to emphasize our intent, as follows:

type FirstName = String
type LastName = String
type Id = String
type Department = String
type Year = Int
type CourseNum = (Int, Int)

data Person
= Student FirstName LastName Id Department Year [(Department, CourseNum)]
| Teacher FirstName LastName Department [CourseNum]

But this doesn’t actually prevent us from mixing up, for example, FirstNames and LastNames because they are just
synonyms for String. Alternatively, we could introduce wrapper types so that the type system would prevent us
from mixing up different types:

data FirstName = FirstName String
data LastName = LastName String
data Id = Id String
data Department = Department String
data Year = Year Int
data CourseNum = CourseNum (Int, Int)

Although this mitigates the first concern, it exacerbates the second because now even more patterns must be written
to get at the data. This may not scalable in large programs with many datatypes and data representation needs to
balance.

Fortunately, Haskell provides a feature that can be used to simultaneously address the two concerns above, namely,
records. Consider the following type definition, where the components, or fields, of each Course value are named
department, num, and section, respectively:

data Course = Course { department :: String, num :: Int, section :: Int }
deriving (Eq, Show)

Course values can be constructed with record syntax, where field names alleviate the need to remember the intended
purpose of each positional component. Notice how the order of fields does not matter.

> let c1 = Course { department = "CMSC", num = 161, section = 1 }
> let c2 = Course { num = 161, department = "CMSC", section = 1 }
> c1 == c2
True
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Course can also be used as an ordinary (non-record) data constructor.

> :t Course
Course :: String -> Int -> Int -> Course

> let c3 = Course "CMSC" 161 1
> c1 == c2 && c2 == c3
True

Based on the record declaration, Haskell automatically generates functions to project, or unwrap, the fields of Course
values:

> :t department
department :: Course -> String

> :t num
num :: Course -> Int

> :t section
section :: Course -> Int

> department c1
"CMSC"

> (num c1, section c1)
(161, 1)

In addition, one can use ordinary data constructor patterns, where components are matched by position:

numAndSection (Course _ num section) = (num, section)

Alternatively, record patterns allow field names to be used:

numAndSection (Course { department = _, num = i, section = j }) = (i, j)

As with record construction, the order of fields in record patterns does not matter. Furthermore, fields can be
omitted if their values are not needed within the scope of the pattern:

numAndSection (Course { section = j, num = i }) = (i, j)

Records can be defined (or not) for multiple data constructors of a type. For example:
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data ABCD
= A { foo :: String, bar :: Int }
| B { foo :: String, baz :: () }
| C Int
| D

This definition exhibits several noteworthy features. First, a field name can be used for components of different data
constructors within a type. Second, not all data constructors need to be defined with record syntax.

Exercise 9.1 Based on the definition of ABCD, what are the types and behaviors of the functions foo, bar, and baz? Think
about it, and then test them out.

Exercise 9.2 Should the following definition be acceptable? Think about it, and then try it out.

data Data = One { data :: Int } | Two { data :: Bool }

Now, using records, we can define Person as follows:

data Person
= Student

{ firstName :: String
, lastName :: String
, id :: String
, major :: String
, year :: Int
, courses_enrolled :: [(String, (Int, Int))]
}

| Teacher
{ firstName :: String
, lastName :: String
, dept :: String
, courses_teaching :: [(Int, Int)]
}

9.2 newtype

Data constructors tag, or label, the values they carry in order to distinguish them from values created with different
data constructors for the same type. As we have seen, it is sometimes useful to define a new datatype even with only
one data constructor. In such cases, tagging and untagging (or constructing and destructing, or boxing and unboxing)
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values is useful for enforcing invariants while programming, but these operations add unnecessary run-time overhead:
there is only one kind of value, so they ought to be free of labels.

Haskell allows datatypes with exactly one unary constructor to be defined with the keyword newtype in place of
data, such as

newtype Identity a = Identity a

or, if we were using a record,

newtype Identity a = Identity { runIdentity :: a }

The choice of Identity may see a bit odd, but it will make more sense later.

For the purposes of programming, using newtype is almost exactly the same as using data. But it tells the compiler
to optimize the generated code by not including explicit Identity labels at run-time. We will get into the habit of
using newtypewhenever we define a datatype with one unary constructor, without delving into the subtle differences
between using newtype and data.

As we meet more of the type classes that are central to Haskell’s design, we will often create wrapper types (i.e. with
one data constructor). Hence, we will use newtype. Furthermore, we will often write expressions of the form

Identity . doSomething . runIdentity

to unwrap (runIdentity), transform (doSomething), and rewrap (Identity) values. Hence, we will use records
so that unwrapping functions are generated automatically. At least, until we find a better way.

One of the common uses of newtype is to provide alternative implementations of various type classes. E.g., if for
some program-specific reason, we wanted to order pairs based on second-element first, we might consider

module BackwardsPair where

import Data.Ord

newtype BackwardsPair a b = BackwardsPair (a,b)
deriving Show

instance (Eq a,Eq b) => Eq (BackwardsPair a b) where
BackwardsPair p1 == BackwardsPair p2 = p1 == p2

instance (Ord a, Ord b) => Ord (BackwardsPair a b) where
compare = comparing (\(BackwardsPair (a,b)) -> (b,a))
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The function comparing :: Ord a => (b -> a) -> b -> b -> Ordering is very useful for defining one or-
dering in terms of another. This is a slightly silly example, but we’ll see more substantial examples soon.

9.3 List Comprehensions

Mathematicians have a concise notation for describing a set, which typically involves describing an initial set, a
predicate, and a form for elements of that set, e.g., {x2 | x ∈ ω and x is even}, the squares of all even natural
numbers. These are called set comprehensions. Haskell provides a similar notation for lists:

> [x^2 | x <- [1..10], even x]
[4,16,36,64,100]

It is possible in list comprehensions to have multiple generators, let bindings, and to interleave generations, tests,
and bindings. As a simple example, let’s generate all of the pythagorean triples that where the hypotenuse is less
than a given number:

pythagoreanTriples n =
[ (a,b,c)
| a <- [1..n]
, b <- [a+1..n]
, c <- [b+1..n]
, a^2 + b^2 == c^2
]

> pythagoreanTriples 20
[(3,4,5),(5,12,13),(6,8,10),(8,15,17),(9,12,15),(12,16,20)]

Note that the results are sorted by a, because the generation runs like this, for each a from 1 to n, generate b from
a+1 to n, and for each such a and b, generate c from b+1 to n...

<!– Also note our use of tuples. Tuples look like lists, but they’re very different. We’ll talk about them more next
lecture, but for now, they’re a convenient way to package up a few values. –>

But notice that this list contains a few non-primitive triples, e.g., (6,8,10), (9,12,15), and (12,16,20), which are
all multiples of (3,4,5). Suppose we wanted to restrict ourselves to primitive triples, i.e., tuples that are relatively
prime to one onother. How might we do that? A simple approach would be to filter out those triples where a and
b have a non-trivial common divisor, i.e.,

primitiveTriples n =
[ (a,b,c)
| a <- [1..n]
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, b <- [a+1..n]
, gcd a b == 1
, c <- [b+1..n]
, a^2 + b^2 == c^2
]

It is more efficient to do the gcd test before the generation of c, because otherwise we’d have to repeat the same test
(on a and b alone) for each c; but it should be noted too that our basic computational plan emphases clarity over
efficiency, and there are much more efficient ways to generate lists of pythagorean triples.

Exercise 9.3 The file Records.hs defines two Teachers, professorChugh and professorKurtz, and a ”database”
of Students, allStudents.

Implement the function

studentsOfTeacher_ :: [Person] -> Person -> [((Int, Int), [(String, String)])]
studentsOfTeacher_ students teacher = undefined

to return those students, identified by lastname-firstname pairs, enrolled in each of the teacher’s courses. Your imple-
mentation can assume that students is a list of Student values and that teacher is a Teacher value.

For example:

> studentsOfTeacher professorChugh
[((16100,1),[("Student","B"),("Student","STEAM")])]

> studentsOfTeacher professorKurtz
[((16100,2),[("Student","C")]),((28000,1),[("Student","D"),("Student","E")])]

Once you are done, consider how one might eliminate the assumption above (but don’t submit this).
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Part II

Core Type Classes and Instances

87



Chapter 10

Maybe Monad is Not So Scary
(Chapter contributed by RC)

[RC: See https://www.classes.cs.uchicago.edu/archive/2023/winter/22300-1/notes/maybe-monad/]
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Chapter 11

Functors

In Wednesday’s lecture, we developed the function mapMaybe :: a -> b -> Maybe a -> Maybe b, having ear-
lier seen map :: a -> b -> [a] -> [b]. There’s a similar pattern of type use here, in which we take a pure
function of type a -> b, and lift it to a function of type f a -> f b, where f is either Maybe or []. Having seen
this pattern twice, it’s tempting to generalize it, and that is done in the standard library via

class Functor f where
fmap :: (a -> b) -> f a -> f b

The word functor comes from Category Theory, where a functor is a homomorphism between two categories.
We’re not going to define categories here, but homomorphisms are simply structure-preserving functions from one
mathematical structure to another. The relevant structure to be preserved here is type-specialized instances of the
identity function id, and composition (.), and so we require

• fmap id = id

• fmap (f . g) = fmap f . fmap g

These equations are not checked by the compiler, but all of the Functor instances of the standard Haskell libraries
satisfy these functor equations, and all your instances should, too. Advanced Haskell compilers are permitted to
assume that the functor laws (and similar laws encountered in related type classes) are valid, and to make code
transformations (a.k.a., optimizations) on that basis.

To a programmer’s first approximation, a Functor is a parameterized type that can be “mapped over.” Intuition is
gained through use.

The Functor type class is defined in the Prelude, which also defines (<$>), a commonly used infix version of
fmap.
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Review: Identity

We saw the identity parameterized type in Lecture 7:

newtype Identity a = Identity { runIdentity :: a }
deriving (Show)

A value of Identity a type can be thought of as a value of type a contained in “an Emperor’s clothes box”, i.e.,
a virtual box that isn’t really there, but which the type system believes it can see, and insists that we see too. The
functor instance is extremely simple: take something out of the (virtual) box, hit it with the function, and put the
result back in a (virtual) box:

instance Functor Identity where
fmap f (Identity x) = Identity (f x)

alternatively, we could have written

instance Functor Identity where
fmap f = Identity . f . runIdentity

Keeping in mind that Identity and runIdentity are just id at runtime, this means that fmap is just id too. This
works pretty much as you’d expect:

> (1+) <$> Identity 2
Identity 3

Note our use of the infix version (<$>) of fmap.

It would seem that there’s not much to say about Identity, nor that it’s very useful. Neither of these are true.
Identity plays an important role in the theory and practice of monad transformers, a topic for later in the quarter.

Review: Maybe

The Functor Maybe instance is pretty simple:

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

These are just the defining equations of mapMaybe, which is revealed as a Maybe-specific version of fmap.
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A Digression: Kinds, and the Types of Types

In the discussion above, we’ve referred to Identity, Maybe, [], and even the parameter f from the class definition
of Functor as parameterized types. These are types in the nomenclature of Haskell, but they’re clearly different from
types like Int, Double, etc. It’s useful at this point to digress briefly to the language of kinds, which are nothing
more or less than the types of types. Fortunately, Haskell’s kind system is very simple.

Familiar types like Int, Bool, and Double have kind *. These are the ground types of Haskell, and are also the
types that can have values.

Identity, Maybe, and [] all have kind * -> *. Intuitively, these are types that can be applied to types of kind *,
resulting in a type of kind *. The pairing type constructor (,) is more complicated still, as it expects two argument
types, both of kind *, and results in a value that is a type of kind *. Unsurprisingly, (,) has kind * -> * -> *.

Kinds are relevant to our discussion here because all of the instance types of a fixed type class must have the same
kind. Thus, all instances of Functor have kind * -> *. What may not be as obvious is that those instances might
arise via type expressions.

This language of kinds can also help us understand one of the category theoretic structures that is peeking out from
the shadows of this course. The category Hask has Haskell types of kind * as its objects, and ordinary Haskell
functions as its arrows. (Note that there are some technical issues here over divergence, which we’re glossing over.)
From this point of view, a type of kind * -> * is an endomorphism (a function with the same domain and range)
on the objects ofHask. Thus a Functor f is just a homomorphism onHask, where f itself is the homomorphism’s
endomorphism on objects, and fmap is the corresponding endomorphism on arrows.

Either

The Either type is a standard Prelude type similar to the Maybe class, but we allow the Nothing-like alternative to
carry along arbitrary information. After all, when an error occurs, we usually want a bit more information.

data Either a b = Left a | Right b
deriving (Eq, Ord)

instance Functor (Either a) where
fmap _ (Left x) = Left x
fmap f (Right y) = Right (f y)

Here we think of Left as the Nothing-like alternative, and Right (which functions as a pun [and what’s a pun but
a type error coerced into a joke?]: positionally as regards the declaration, and normatively in the ”non-error value”
sense) is analogous to Just. As the grandfather of a southpaw, I find this to be chirally incorrect, but one can only
fight so many battles at one time. Note that Either has kind * -> * -> *, but for any type s of kind *, Either a
is a type of kind * -> *, which is the kind of Functor instances.

A temptation here is to rewrite the Left case of the instance definition of fmap above, so as to avoid the pattern
match and the (apparent) reconstruction of Left x. A hard moment’s reflection, however, reveals that Left x has
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different type on the LHS than the RHS, and so this can’t be avoided. They’re different Left’s.

Review: Lists

Lists are one of our motivating examples, and so it’s not surprising that

instance Functor [] where
fmap = map

and that is exactly how it is defined in GHC.Base.

Exercise 11.1 Create an appropriate Functor instance for BinaryTree:

data BinaryTree a
= EmptyTree
| Node a (BinaryTree a) (BinaryTree a)
deriving (Show)

Pairs

Remember that we can write the ordered pair type (a,b) as (,) a b. This allows us to make ordered pairs an
instance of functor, by having fmap act on the second coordinate:

instance Functor ((,) a) where
fmap f (a,b) = (a,f b)

For example

> (+1) <$> ("one",1)
("one",2)

Exercise 11.2 The Functor instance for pairs might make the first components of pairs jealous: why should the second
components get all the attention?

We might try to be clever and use our knowledge of type aliases to rearrange the type variables and provide the following
additional instance declaration:

type Pair a b = (,) b a
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instance Functor (Pair b) where
fmap f (x, y) = (f x, y)

This makes Haskell very unhappy. What error does Haskell report and why?

Exercise 11.3 An alternative approach to dealing to the problem of Exercise 9.2 is via the Bifunctor type class defined
in Data.Bifunctor, which has the class definition:

class Bifunctor p where
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
first :: (a -> b) -> p a c -> p b c
second :: (c -> d) -> p a c -> p a d

A type of class Bifunctor must have kind * -> * -> *. Provide instances of Bifunctor for (,) and Either.

Functions

We can think of functions g :: a -> b as being containers of b’s, indexed by a’s. As such it is easy to turn ordinary
functions into functors.

The idea is that if we fmap via f across such a container g, and look up the value of that container at a, we have

(fmap f g) a = f (g a)
= (f . g) a

which we η-reduce to

fmap f g = f . g
= (.) f g

which can be η-reduced twice more, giving us

instance Functor ((->) a) where
fmap = (.)

This is surprising, but in a way, argues for the naturalness of what we’re doing, as the fmap function can be thought
of as a simultaneous generalization of map and (.).

Exercise 11.4 What is the type of fmap in the ((->) a) instance? (Hint: it may help to first write out the type of fmap
in the other instances above.)
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Association Lists

Association lists are lists of key-value pairs, and have long been used in functional programming languages to represent
finite functions. In Haskell, we can represent association lists very cleanly:

type Assoc a b = [(a,b)]

Or, perhaps more suggestively for our current purposes,

type Assoc a b = [] ((,) a b)

If this were ordinary code, we’d be tempted to write

type Assoc a b = [] ((,) a b)
= ([] . (,) a) b

and then η-reduce to

type Assoc a = [] . (,) a

This sort of thing is possible (albeit, not with this syntax), but our point here isn’t to repurpose our code rewriting
techniques as type rewriting techniques, but instead to note that Assoc a can be thought of as involving the com-
position of two functors, [] and (,) a. This is the more significant observation. Recall that we earlier identified
functors with homomorphisms of categories. Compositions of homomorphisms are homomorphisms, and therefore
compositions of functors must also be functors. The question is how to take advantage of this?

Our goal is to make Assoc a (where Assoc a b is a type alias for [(a,b)]) into a functor, much as (->) a is a
functor (remembering now that Assoc is often used to represent finite functions). One problem is that we can’t
turn a type synonym into a functor, only a type, optionally applied to type variables. Another problem is that the
outer type constructor [] is already a Functor, and types can belong to type classes in only one way.

A first approach to this solution would be to wrap our aliased type, and define

newtype Assoc a b = Assoc { getPairs :: [(a,b)] }

instance Functor (Assoc a) where
fmap f assoc = Assoc [(a,f b) | (a,b) <- getPairs assoc]

This works well. An alternative might be to stick with the original definition of Assoc as a type alias, and introduce
a new name for the fmap function associated with the composed functors, i.e.,
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amap :: (b -> c) -> Assoc a b -> Assoc a c

When we do this, and rework the code, something very striking happens...

amap f ps = fmap (fmap f) ps
= (fmap . fmap) f ps

which η-reduces to

amap = fmap . fmap

This is easy enough, and after a while intuitive enough, that Haskell programmers typically don’t wrap composed
functor instances, nor do they introduce new names associated with viewing a composed functor instance as a functor
directly. Instead, they just use (fmap . fmap) to lift a function through two functors.

The really striking thing is that this generalizes! Let’s consider a type that involves a three-level composition of
functors, e.g.,

type AssocMap a b c = [(a,b->c)]

This is a type alias that composes the functors [], (,) a, and (->) b, applying the result to c. If we want to
produce a function that does a remapping three levels down:

mmap :: (c -> d) -> AssocMap a b c -> AssocMap a b d

We’ll eventually derive mmap = fmap . fmap . fmap! So we can just use fmap . fmap . fmap. The first time
I saw this idiom in live code, my mind was blown. The first time you see it, your mind will probably be blown too,
but at least it will be something you’ve seen before.

As if that weren’t enough, this idiom can be generalized to a few other type classes, but that’s a story for another
day.
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Chapter 12

Applicative

Functors are very nice. They give us a uniform mechanism for ”lifting” functions defined at a simple type to act
on complicated types that are parameterized by that type, For example, if F is a Functor, and f :: A -> B, then
fmap f :: F A -> F B.

But what happens if f isn’t unary? Consider a hypothetical f :: A -> B -> C. Intuitively, we might hope
fmap f :: F A -> F B -> F C, but it doesn’t work that way. We’ve already defined fmap so that fmap f :: F A -> F (B -> C),
i.e., the result of the first application is to produce a function in an F box, rather than a function that takes boxed
values, and returns a boxed value. We could work with this if F had a mechanism for applying boxed functions to
boxed arguments, returning boxed results.

The Applicative type class addresses this issue.

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b
...

A type f is Applicative if it is a Functor that, additionally, comes with two members: an infix operator (<*>)
(pronounced ”ap”) that takes a boxed function of type f (a -> b), applies it to a boxed argument of type f a, and
produces a boxed result of type f b; and a function pure of type a -> f a that ”lifts” simple values into boxed
ones. There are more functions in the Applicative type class than these, but the pair pure and (<*>) are both
minimally complete for, and the most commonly used functions of, the Applicative type class.

Once we have this, we can ”factor” fmap:

fmap f appA = pure f <*> appA

Or, for those who like to play with η-reduction:
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fmap = (<*>) . pure

Recall that (<$>) is an often used infix version of fmap. Indeed, (<$>) is especially useful in applicative contexts,
as we saw in Lecture 5.

In addition to the Functor laws involving fmap, every Applicative must satisfy the following laws:

• pure id <*> v = v

• pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• pure f <*> pure x = pure (f x)

• u <*> pure y = pure ($ y) <*> u

We’re not going to dwell on these laws now, but in time, they’ll seem obvious.

Maybe

Our handling of Maybe in Lecture 5 was intended to anticipate and motivate our discussion of Applicative and
other category theoretic type classes. Recall that we defined

justMaybe :: a -> Maybe a
justMaybe = Just

applyMaybe :: Maybe (a -> b) -> Maybe a -> Maybe b
applyMaybe (Just f) (Just a) = Just $ f a
applyMaybe _ _ = Nothing

These functions had exactly the types and roles that we need for an Applicative instance of Maybe, and so,

instance Applicative Maybe where
pure = Just

(Just f) <*> (Just x) = Just (f x)
_ <*> _ = Nothing

The definition of (<*>) in Control.Applicative is a bit different, but produces the same values.

The effect of these definitions is to enable a very general mechanism for dealing with computations that may result in
errors, in which the usual evaluation mechanism is adjusted to allow errors to propagate through the usual evaluation
process, and so requires no other special handling.
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Recall, for the moment, our Maybe arithmetic, not from Lecture 5, but from Lecture 3, where we created a derived
instance

-- | Derived instance definition for Num (Maybe n) given Num n.

instance Num n => Num (Maybe n) where
Just a + Just b = Just $ a + b
_ + _ = Nothing

Just a - Just b = Just $ a - b
_ - _ = Nothing

Just a * Just b = Just $ a * b
_ * _ = Nothing

negate (Just a) = Just $ negate a
negate _ = Nothing

abs (Just a) = Just $ abs a
abs _ = Nothing

signum (Just a) = Just (signum a)
signum _ = Nothing

fromInteger i = Just $ fromInteger i

We can use Applicative to substantially simplify this definition. First, we introduce the function liftA2, which is
actually a part of the full definition of the Applicative type class, but you have to include Control.Applicative
to get it:

class Functor f => Applicative f where
...
liftA2 :: (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f <$> a <*> b

With this in hand, we can write:

instance Num n => Num (Maybe n) where
(+) = liftA2 (+)
(-) = liftA2 (-)
(*) = liftA2 (*)
negate = fmap negate
signum = fmap signum
abs = fmap abs
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fromInteger = pure . fromInteger

Which is both amazingly more concise, but also, clearer once you gestalt/grok Applicative. Note that fmap can
be thought of as liftA1, and indeed, there is a legacy liftA function from the dark days of 2015 and earlier, before
all instances of Applicative were required to be instances of Functor, that is exactly that. There’s also a liftA3,
but surprisingly, no liftA4. If you need it, you’ll have to write it. But returning to liftA1/liftA: an emerging
Haskell convention that when essentially the same function is defined in two related type classes, to prefer the name
associated with the more general type class, hence fmap above.

Exercise 12.1 In the spirit of the liftA* functions, implement the following to lift an unboxed function and apply it to
a boxed list of arguments.

liftAN :: Applicative f => ([a] -> b) -> f [a] -> f b

How useful is this function?

Exercise 12.2 Unsurprisingly, there is also an instance of Applicative for Either a. Provide an instance definition,
and compare it to the definition in the Haskell sources.

Exercise 12.3 Perhaps surprisingly, given the foregoing, there is not an Applicative instance for (,) a. Why not?

List

It is sometimes useful to think of a function f :: A -> [B] as a non-deterministic function of type f :: A -> B,
i.e., a function that can have zero or more return values. In this case, it may help to think of the [] type constructor
as a ”computational context” rather than a ”box” of values. From such a perspective, the effect of ”applying” a
list of functions to a list of arguments ought to be to non-deterministically select a function, and apply it to a non-
deterministically selected argument, i.e., to form the list of all the ways we can apply functions to arguments. Thus,

instance Applicative [] where
pure x = [x]
fs <*> xs = [f x | f <- fs, x <- xs]

Thus,

> [] <*> [2,3] <*> [4,5]
[]
> [(+)] <*> [2,3] <*> [4,5]
[6,7,7,8]
> [(+),(*)] <*> [2,3] <*> [4,5]
[6,7,7,8,8,10,12,15]
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Note that the resulting list for the last expression above is [2+4,2+5,3+4,3+5,2*4,2*5,3*4,3*5], in precisely
this order.

Exercise 12.4 Write an expression in applicative style that computes the same result as:

[ (x,y,z) | x <- [1..3], y <- [1..3], z <- [1..3] ]

ZipList

It turns out that there’s a second, natural way to implement a list as an Applicative. The idea is to represent
parallel (rather than non-deterministic) computation, i.e., that the i-th element of the result list comes from applying
the i-th operation to the i-th operand. As we are well aware by now, however, a type can be an instance of a type
class in only one way, and therefore we need to use newtype to create a (virtual) distinct type for the purpose of
driving type class instance selection:

newtype ZipList a = ZipList { getZipList :: [a] }

Thus, a ZipList a is just a [a] inside a (virtual) ZipList box.

Of course, we do this to provide a distinctive Applicative instance, but we have to provide a Functor instance as
well. We’ll use what is essentially the standard definition of fmap for lists, acting within the box:

instance Functor Ziplist where
fmap f (Ziplist xs) = ZipList (fmap f xs)

Note here that the fmap on the right hand side of the definition is []’s fmap, i.e., our old friend map. We now define
the following:

instance Applicative ZipList where
(ZipList fs) <*> (ZipList xs) = ZipList (zipWith id fs xs)

This requires a bit of explanation, because it’s probably not what you’d expect. Certainly, I’d expect something like
a binary function that performs application (e.g., \f x -> f x). But...

\f x -> f x = \f -> \x -> f x
= \f -> (\x -> f x)
= \f -> f
= id
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Or, to put this same pun differently,

id f x = (id f) x
= f x

So we didn’t need to ”roll up” a special purpose binary application function. We already had one, in the identity
function. Weird.

The alert reader/listener will have noticed that I haven’t yet provided a definition of pure for Applicative ZipList.
This takes a bit of thought... Let’s think about what we want:

> id <$> ZipList [1]
ZipList {getZipList = [1]}
> id <$> ZipList [1,2]
ZipList {getZipList = [1,2]}
> id <$> ZipList [1,2,3]
ZipList {getZipList = [1,2,3]}

Hmm. So pure id has to be a function that contains id in every coordinate of a list of indeterminate length.
Haskell’s laziness bails us out here. Lists are not necessarily finite, and we can perform useful computations using
infinite lists (as long as finiteness comes from somewhere else)

A standard Haskell function is

repeat :: a -> [a]
repeat a = a :: repeat a

In effect, repeat describes a computational process for building a potentially infinite list.

instance Applicative ZipList where
pure x = ZipList (repeat x)

Of course, this definition of pure has implications for arguments as well as functions, cf.

> (+) <$> pure 3 <*> ZipList [1..4]
ZipList {getZipList = [4,5,6,7]}

Exercise 12.5 Consider the following two, very similar looking calculations:

> [(+),(*)] <*> pure 2 <*> pure 3
[5,6]
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> ZipList [(+),(*)] <*> pure 2 <*> pure 3
ZipList {getZipList = [5,6]}

The results of these computations (modulo syntactic noise around ZipList) are identical, but the computational patterns
that produce these results are quite different. Explain the difference.

Exercise 12.6 There are several additional operators defined to improve readability when writing programs in applicative
style:

(<$) :: Functor f => a -> f b -> f a
(*>) :: Applicative f => f a -> f b -> f b
(<*) :: Applicative f => f a -> f b -> f a
(<**>) :: Applicative f => f a -> f (a -> b) -> f b

We won’t often use them in our examples. But, similar to our discussion of foldMap and foldr last time, it can be helpful
to think about how to implement such polymorphic functions based only on their types and what we know about the type
classes that are mentioned in their constraints.

Try implementing these functions before peeking at them in the libraries.

Functions

We saw last time an Functor instance for (->) a, i.e., functions that have domain type a. There is also an
Applicative instance, and it’s worth working through.

We begin by considering pure. Let’s suppose that b :: tb, and consider pure b. This has to be a function of type
a -> tb, which leaves us with the conundrum of what to do with the argument, and what to provide as a result.
The only plausible answers are to (a) ignore the argument, and (b) to return b, as it’s the only value of type tb
available to us! Thus,

pure b = \a -> b

This is actually a predefined function,

const :: a -> b -> a
const a _ = a

Next, we need to implement (<*>), which in this context will have type (a -> b -> c) -> (a -> b) -> (a -> c).
There’s pretty much only one thing we can do:
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f <*> b = \a -> f a (b a)

We can apply both sides to a, reduce, and get

(<*>) f b a = f a (b a)

Thus,

instance Applicative ((->) a) where
pure = const
(<*>) f b a = f a (b a)

Surprisingly, this sort of thing can be useful. Let’s suppose, for the sake of argument, we want to compute the sum
of all of the integers from 1 to 100 which are divisible by either 2 or 3. We can do this:

divisibleBy :: Int -> Int -> Bool
divisibleBy d n = n `rem` d == 0

result1
= sum
. filter (\x -> divisibleBy 2 x || divisibleBy 3 x)
$ [1..100]

That’s not terrible, but at some point in your development as a programmer, you’ll decide that the expression
\x -> divisibleBy 2 x | divisibleBy 3 x| is too low level an approach to building the “or” of two predicates. It
should be possible to take the ”or” more directly. At this point, you might define

orf :: (a -> Bool) -> (a -> Bool) -> (a -> Bool)
orf f g a = f a || g a

result2
= sum
. filter (divisibleBy 2 `orf` divisibleBy 3)
$ [1..100]

After all, all you’re doing is lifting or. At some point, this language will remind you that there are already type
classes for dealing with lifted types, and a light goes on. You didn’t need to define orf at all. Like Dorothy and the
ruby red slippers, you already had what you needed:
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result3
= sum
. filter ((||) <$> divisibleBy 2 <*> divisibleBy 3)
$ [1..100]

or,

result4
= sum
. filter (liftA2 (||) (divisibleBy 2) (divisibleBy 3))
$ [1..100]

There’s no place like home.
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Chapter 13

Monads

Monads

Let’s review the bidding. We’ve seen two category theory inspired type classes:

class Functor f where
fmap :: (a -> b) -> f a -> f b

and

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

These type classes reflect common patterns of type usage, and a language that is we find helpful is that of plain types
like a, vs. fancy types like f a. Thus, a Functor must implement a function fmap that enables us to transform
a function on plain types to a function on fancy types. The Applicative function pure enables us to promote a
plain value to a fancy value. Finally, (<*>) can be thought of as “apply for fancy things,” or, if we think of it as a
unary function in the same way we think of fmap as a unary function, a means to distribute fanciness over (->),
converting a fancified function into a plain function whose domain and range are fancy values.

Our next type pattern is Monad, boogie-man of Haskell. But as we’ll see, monads are are just instances of a pattern
of type use that occurs a lot in programming. We’ll start with an abridged definition:

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
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This looks a bit odd, but we can see in this a kind of “application written backwards,” where we take a fancy value,
and a fancifying function that maps plain values to fancy values, and some how “apply” the latter to the former,
obtaining a fancy value. There are reasons why these things are the way they are.

These peculiar functions are sometimes called “actions,” and (>>=) serves as a sequencing mechanism. It is natural,
in such contexts, to describe a sequence of actions (beginning with a start value) as a pipeline, in which the actions
take place in the order they’re written. The operation (>>=) is called bind, because in a common notation for
describing sequenced actions in which the (>>=) operator is cleverly elided, it’s effect will be to establish the binding
of a name to plain values extracted from fancy values.

There are other functions that belong to the Monad type class, but they have default definitions, and we can defer
their consideration for the time being.

Identity

The Identity instance of bind is very simple: given a fancy value, we simply remove it from its virtual box,
obtaining a plain value, and apply our fancifying function to the result.

instance Monad Identity where
Identity a >>= f = f a

You can see that it’s the fancifying function’s responsibility to box its output.

Maybe

The Maybe instance of bind is also very simple: a Just value is handled like an Identity value, whereas there’s no
plain value to be extracted from a Nothing argument, and so we have a Nothing result:

instance Monad Maybe where
Just a >>= f = f a
Nothing >>= f = Nothing

I think you’ll agree, we haven’t seen anything scary yet.

A Bit of History

Monads solved a crucial problem in the design of pure functional languages like Haskell, i.e., how to deal with IO,
which is intrinsically impure. Monads provide an interface for defining a kind of “isolation ward” in which impure
actions could be defined and performed, apart from the pure core of the language, but in contact with it. This is part
of why monads became the boogie-man of Haskell, because a full accounting of something as simple as the standard
“Hello, world!” program required this digression through category theory, and a very abstract type class.
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As the language was first developed, Monad was a stand-alone type class, i.e., it wasn’t necessarily the case that
instances m of the Monad type class belonged to Functor, let alone Applicative. In order to make the Monad
useful, other functions were included in the standard interface:

instance Monad m where
...
return :: a -> m a
fail :: String -> m a

We recognize that return has the same type pattern as pure, and indeed Monad instances are required to satisfy
the law return = pure, and a default definition of return is provided so that this is so. This results in a bit of
confusion over lexicon: which should you use? The sense of the community is evolving, but we believe it will
converge on the simple solution of always preferring pure, and that’s the style we’ll teach. We have a lot of code
that we’ll need to convert. In any event, if you ever encounter a return in the wild, read pure, and code on!

The inclusion of fail is more controversial. The monads of category theory do not have a fail function, and there
are many types which would otherwise be monads for which no sensible fail function can be written. Indeed, the
most common implementation of fail is fail = error, i.e., to raise an exception. This is just one of those cases
where the motivation for including the monad abstraction (dealing with IO) resulted in a bad design decision. IO
can fail, and there needs to be a way to deal with IO failures, but including fail in Monad was not the right choice.

The status quo is that a new type class has been defined,

instance Monad m => MonadFail m where
fail :: String -> m a

and that the fail function of Monad is now deprecated, and will be removed in the future. Caveat emptor!

A Bit of Law

There are several axioms that describe how pure and (>>=) interact, and Haskell makes optimizations based on the
assumption that they do:

• left identity: pure a >>= f is equivalent to f a

• right identity: ma >>= pure is equivalent to ma

• associativity: (ma >>= f) >>= g is equivalent to ma >>= (\x -> f x >>= g)

These laws (especially associativity) seem a bit odd. There’s a simple transformation that makes them more compre-
hensible. Category theorists describe functions of type a -> m b where m is a monad as Kleisli arrows (pronounced
“KLAI-slee”). We will think of them as machines that take plain values as input and produce fancy values as output.
A key notion is Kleisli composition, which is a means for composing this sort of machine. It’s useful to directly
compare the type patterns involved:
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(.) :: (b -> c) -> (a -> b) -> a -> c
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c

It is, by the way, quite easy for us to define (<=<), and worth considering in parallel with the definition of (.).
We’ll use (=<<) here, an infrequently used flipped bind, to accentuate the analogy between the definition of (.) and
(<=<):

f . g = \x -> f $ g x
f <=< g = \x -> f =<< g x

In category theory, if we have a monad over a category, we can build the Kleisli category in which the objects are the
objects of base category, the arrows from a to b are the Kleisli arrows of type a -> m b, and the identity is pure,
and composition is (<=<). Thus, the ordinary axioms of category theory for this category are:

• left identity: pure <=< f is equivalent to f

• right identity: f <=< pure is equivalent to f

• associativity: (f <=< g) <=< h is equivalent to f <=< (g <=< h)

These are equivalent to the laws above (although the careful reader will note that the chirality of the identity laws is
flipped), but much more intuitive.

As with the other category theoretic type classes, Haskell compilers are allowed to assume that the monad laws
are satisfied by any Monad, and to transform code accordingly. Naturally, all of the Monad instances defined in the
Haskell libraries do.

Lists

The [] is also an instance of Monad, but in a more interesting way than Identity or Maybe. It is useful to start
with a brief digression. Folks who are familiar with category theory via mathematics may be a bit perplexed by our
presentation of monads. In the standard approach, the critical function is join :: Monad m => m (m a) -> m a.
The way we like to think about this is that the plain/fancy hierarchy really only has two levels: plain and fancy. If
we try to create an “extra fancy” value, we can demote it to ordinary fanciness by simply applying join to it.

The join function is often fairly easy to understand. If we have a double layered structure, we can often delayer it,
e.g.,

join :: Identity (Identity a) -> Identity a
join (Identity (Identity a)) = Identity a

join :: Maybe (Maybe a) -> Maybe a
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join (Just (Just a)) = Just a
join _ = Nothing

If we consider join on lists, we have:

join :: [[a]] -> [a]

There is already a very natural list function that has this type pattern:

concat :: [[a]] -> [a]

In this particular case, join essentially “flattens” our list structure, forgetting the boundaries between sublists. There
are a lot of monads which join works this way, “erasing” interior boundaries.

There is something unreasonable about what we’ve just done, taking the type of something we’re looking for, and
then reaching into our magic hat, and pulling out a more familiar object that just happens to have the same type, and
then claiming that that’s what we’ve been looking for. What is surprising, in both mathematics and in type-driven
development, is that it’s often the case that the pieces fit together in essentially only one way. This has the perfectly
unreasonable consequence that if we’re looking for something that has a particular type, and there is only one way
to build that object, then getting the types right is all we need to do.

We can use this idea to “discover” the relationship between join and (>>=). Let’s suppose we want to build (>>=)
out of join. Our goal is to get to the type:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

Recall fmap:

fmap :: (Functor f) => (a -> b) -> f a -> f b

If we supply fmap with an argument of type a -> m b where m is a monad, and we apply it to an argument of type
f a, we’ll have

fmap :: (Monad m) => (a -> m b) -> m a -> m (m b)

which is pretty close. The arguments are in the wrong order, and have to somehow get from m (m b) to m b, but
that’s what join is for. Thus, we guess

ma >>= f = join (f <$> ma)
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It’s a good guess.

Exercise 13.1 Show that (>>= id) :: Monad m => m (m a) -> m a, and therefore that join = (>>= id) is a
plausible definition for join in a Monad. It is, in fact, the definition.

Putting all of this inspired, insane, guess work together, we have

instance Monad [] where
xs >>= f = concat (f <$> xs)

The actual definition of (>>=) is equivalent, and perhaps even a bit more intuitive.

instance Monad [] where
xs >>= f = [y | x <- xs, y <- f x]

Thus, (>>=) on lists is actually fairly simple. We consider the elements x of the argument list xs one at a time, for
each such element we form f x, a list, which constitutes a part of the value we’re constructing. We then combine
these sublists by concatenation.

One caution in this: the join function is an ordinary function, and not part of the Monad type class. This is
unfortunate, as it means there is no default definition of (>>=) in terms of join, but also that our approach of
re-defining join will often entail explicit namespace specifications.

Making Monads Work for Us

We’ve invested some effort into monads, their definition, and a few of their instances. But we haven’t yet used them
to solve any programming problems. Let’s take a look at a bit of code:

pure 1 >>= \x ->
pure (x + x) >>= \x ->
pure (x * 2) >>= \x ->
pure x

This can be evaluated (if you give the type checker enough information to know that you’re working in with
Identity as the monad), and returns Identity 4.

This is a bit confusing, especially as to why anyone would want to do something so convoluted, but this has a lot
to do with the fact that the glue code associated with the Identity monad is trivial. More complicated examples
are coming, as are some meaningful syntactic simplifications. In interpreting this, it is important to understand that
>>= has low precedence, so this is really:

110



pure 1 >>= (\x ->
pure (x + x) >>= \(x ->
pure (x * 2) >>= (\x ->

pure x)))

I.e., each lambda’s body extends all the way to the bottom. We’ve laid this out so that each line represents a
deeper level of lexical nesting. This syntax is certainly awkward, but keep in mind we’re building up a machinery
for contexts that are more interesting than simple transparent boxes. Moreover, Haskell has a special syntax for
working with monads, the semi-familiar do, which is nothing more than syntactic sugar for expressions built out of
(>>=). Consider the following, which is just a do-sugared variant of the expressions above:

do
x <- pure $ 1
x <- pure $ x + x
x <- pure $ x * 2
return x

This makes our expression look a lot like assignment-based procedural code that is so familiar to C and Java pro-
grammers, with just a bit of extra syntactic noise. And we can think about it that way, too, although that’s not what
actually is happening. We’re not making a sequence of assignments to a single variable x, instead we’re establishing
a “new” x on each line, whose scope extends to the next x, and we’re binding a value to it.

Thus, it is possible to write code that looks imperative, but with a functional meaning and interpretation, in which
sequencing is a metaphor for lexical nesting, and so makes it easy for us to use and reason about deeper levels of
lexical nesting than we’d otherwise attempt.

The structure of do notation is fairly straight forward. Let’s suppose that the value we’re constructing has type
m a for some monad m. Then every line of the do will be comprised of a value of type m b for some b, optionally
including the binding of a name via the <- syntax. Consecutive lines are combined using (>>=) when there is an
explicit binding, and (>>) when there is not, where

(>>) :: Monad m => m a -> m b -> m b
ma >> mb = ma >>= \_ -> mb

is just a binding that doesn’t retain the value of its argument.

Let’s use this with []. Consider the word “Mississippi.” Kids love this word, because of the repetition of letters,
and the rhythm of spelling it out. We might even think of using this repetition as a way of compressing the spelling,
e.g., representing it by a value of type [(Int,Char)] where each pair is a count together with a letter. Thus,

mississippiCompressed :: [(Int,Char)]
mississippiCompressed
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= [(1,'M'),(1,'i'),(2,'s'),(1,'i'),(2,'s'),(1,'i'),(2,'p'),(1,'i')]

Consider now the job of decompressing such a representation, of recovering the original string.

decompress :: [(Int,a)] -> [a]
decompress ps = do

(i,x) <- ps
a <- replicate i x
pure a

This uses the replicate :: Int -> a -> [a] function from Data.List, which is also in the prelude.

We could have approached this as a list comprehension problem, and there’s a clear relationship between list com-
prehension and the list monad

decompress ps = [a | (i,x) <- ps, a <- replicate i x]

But one advantage of the monadic approach is that we’ll soon develop a number of skills for working with monadic
definitions, and we can apply them even here. One such observation is that constructions like

do
...
a <- expr
pure a

Can be rewritten as

do
...
expr

This is just a consequence of the right identity law for monads, after applying an η-reduction on \a -> pure a.
Thus,

decompress ps = do
(i,x) <- ps
replicate i x

Next, we can recognize that \(i,x) -> replicate i x is just uncurry replicate, which allows us to write:
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decompress ps = ps >>= uncurry replicate

or even

decompress = (>>= uncurry replicate)

Next, let’s consider an earlier exercise that we solved with list comprehension, generating all of the primitive
Pythagorean triples up to a particular hypotenuse:

primitiveTriples n =
[ (a,b,c)
| a <- [1..n]
, b <- [a+1..n]
, gcd a b == 1
, c <- [b+1..n]
, a^2 + b^2 == c^2
]

To translate this to do notation, we simply replicate each of expressions to the right of the bar as a line in the do,
and move the expression to the left to the bottom:

primTriples n = do
a <- [1..n]
b <- [a+1..n]
gcd a b == 1
c <- [b+1..n]
a^2 + b^2 == c^2
pure (a,b,c)

This doesn’t quite work, because the lines that correspond to tests don’t have a monadic value, but rather a boolean
value. We want to write a function guard :: Bool -> [()] that allows us to complete the translation as:

primTriples n = do
a <- [1..n]
b <- [a+1..n]
guard $ gcd a b == 1
c <- [b+1..n]
guard $ a^2 + b^2 == c^2
pure (a,b,c)
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Writing guard will test our understanding of the list monad actually works. There is no explicit binding on the
guarded lines, and we know that we’re returning a list of ()’s. Recalling the definition of (>>), the body below the
guarded line will be run once for each element of that list. Thus, we want the guarded line to have the value [()]
if the predicate we’re testing is true, and [] otherwise. Thus,

guard :: Bool -> [()]
guard True = [()]
guard False = []

There’s a cute trick, known as the Fokker trick after the programmer who invented it, where

guard b = [() | b]

In this case, there are no generators, but the effect of the definitions is to produce a single () if b is True, and
none otherwise. The [] type belongs to many other type classes, including Alternative, which we’ll meet in a
future lecture. There is a function guard :: Alternative f => Bool -> f () of which our guard is just a
type-restricted special case.

Exercise 13.2 Consider the trivial two-element list [(),()]. Because this is an element of the list monad, we can include
it on any line of list-defining do expression. Consider the two statements:

do
[(),()]
x <- [1,2,3]
pure x

vs

do
x <- [1,2,3]
[(),()]
pure x

These produce very different values. Explain the difference. The first expression can be re-written, using the techniques
described above, into a particularly simple form that does not involve do. Do so. Optionally: if you’re feeling especially
brave, the second form can be re-written in the same way, albeit not quite so simply. Do so.

Exercise 13.3 Write out an instance definition for Monad Either. Yeah, you can look it up in the source code, but do it
yourself.

Exercise 13.4 We saw earlier that every Applicativemust be a Functor, and indeed that the link between Applicative
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and Functor is so strong that if we can define pure and (<*>) for a type Mwithout mentioning fmap, then we implement
the Functor instance “for free” via:

instance Functor M where
fmap f x = pure f <*> x

or even

instance Functor M where
fmap = (<*>) . pure

in much the same way, if we can implement return and (>>=)without using pure or (<*>), there’s also a “free” instance
implementation of Applicative available. Write it. Once you’ve done so, take a look at Control.Monad.ap and its
implementation.
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Chapter 14

The IO Monad

Warmup

Let’s start with a simple IO program. This is a Haskell version of a program one of Professor Kurtz’s roommates
encountered very late at night while working on a CDC 6700 in 1978... . Recall that a value of type IO a is an
IO-action, which, when performed, results in the production of a value of type a, and this value can be captured by
the (>>=) operator (which appears as <- in the commonly used, syntactically sugared do notation).

-- | The annoying "frog" program.

module Main where

import System.IO

-- | Produce a String containing n lines, each of consisting of "frog."

manyFrogs :: Int -> String
manyFrogs i = unlines $ replicate i "frog"

-- | The main act...

main :: IO ()
main = do

putStr "How many frogs? "
hFlush stdout
nstr <- getLine 'How many frogs? '
let n = read nstr
putStr $ manyFrogs n
main
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You could imagine doing this with the “ninety-nine bottles of beer on the wall” song, but that would have been
really annoying!

This is a pretty typical first-pass at a program like this. We’ve tried to factor out the pure part of the code, cf.,
manyFrogs, while almost every line of main involves an IO action.

Note the use of binding to extract information from getLine :: IO String, and the use of let to bind a variable
based on a pure computation. One minor surprise is the hFlush stdout line, which deals with a buffering issue.
For efficiency reasons, compiled Haskell code line buffers output, which means that output is send to stdout when
a newline is added to the buffer. This is a problem if we want to read the answer to a question on the same line as
the prompt. The solution, naturally enough, is to flush our output buffer. Finally, note the recursive call to main as
the last line of main. This has the effect of creating an infinite loop. It’s a common idiom, but there is a better way.

Of course, this code works correctly the first time we write it, but as Haskell programmers, we’re not satisfied until
we’ve worked on the code a bit.

The code fairy insists that we η-reduce manyFrogs, so we do:

manyFrogs = unlines . (`replicate` "frog")

We quickly realize that the sequence of actions that consist of writing out a prompt string, flushing it, and reading a
response, is something that we’re likely to want to do again. So we create a new IO action that captures this common
interaction:

-- | Prompt for a line of input

prompt :: String -> IO String
prompt msg = do

putStr msg
hFlush stdout
answer <- getLine
pure answer

Of course, we recognize the opportunity to eliminate a binding followed by pure, resulting in

-- | Prompt for input

prompt :: String -> IO String
prompt msg = do

putStr msg
hFlush stdout
getLine

Optionally, we might decide this is simple enough to desugar into a one-liner:
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prompt msg = putStr msg >> hFlush stdout >> getLine

Note that (>>) doesn’t actually use the value from the left-hand argument, and so it more naturally lives in the land
of Applicative, where it is found as (*>). So a purist might take this to

prompt msg = putStr msg *> hFlush stdout *> getLine

on the theory that reducing our lexicon by eliminating (>>) is a good thing. We’re purists.

Factoring out prompt enables us to simplify main:

main = do
nstr <- prompt "How many frogs? "
let n = read nstr
putStr (manyFrogs n)
main

Next, we realize that we’re saving our input String in the variable nstr, only to immediately convert it via read
into n. This makes us hopeful that we can eliminate nstr altogether, and eliminating ephemeral variables often
improves functional code. A first thought is that we can fold this into prompt, producing a specialized version of
prompt that results in binding an Int. But there’s a better way. IO is not just a Monad, it’s also a Functor, and we
can use (<$>) to “adjust” the result of an IO-action. Thus,

main = do
n <- read <$> prompt "How many frogs? "
putStr (manyFrogs n)
main

Finally, there’s a nice function forever :: Applicative f => f a -> f b that repeats f a forever, so we can
make this:

main = forever $ do
n <- read <$> prompt "How many frogs? "
putStr (manyFrogs n)

At this point, we could call it done, and probably should, but what the heck... As earlier, we might look at that n
with some skepticism. It is nothing more than an ephemeral data carrier, and so it should be possible to eliminate
it. A simple intermediate step is to try to simplify the call to putStr so that it consists of a single variable. We can
do this by moving manyFrogs up to the preceding line, in effect making it part of the input processing.
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main = forever $ do
frogs <- manyFrogs . read <$> prompt "How many frogs? "
putStr frogs

Which can be immediately transformed to

main = forever $
manyFrogs . read <$> prompt "How many frogs? " >>= putStr

This works, but it’s hard to read because the ($) and (.) want to be read from right-to-left, while the (>>=)
wants to be read from left-to-right. There are several approaches to dealing with this, e.g., we could use (=<<), the
backward version of (>>=) but it’s more natural to read processing pipelines from left-to-right, and so we’ll pursue
that approach.

First, let’s tackle <$>. We want an operator version of flip <$>, and after a bit of searching, we find (<&>) in
Data.Functor. Very nicely, (<&>) has the following fixity declaration

infixl 1 <&>

This is just right because $ has fixity infixr 0, and so operates at a lower precedence than our pipeline operators,
and (>>=) has fixity infixl 1, the same as <&>, which means they mix and match naturally. This gets us to

main = forever $
prompt "How many frogs? " <&> manyFrogs . read >>= putStr

Which is better, but there’s still that reversal of order via (.). This is not a perfect world. Ideally, there’d be a
flipped composition that had fixity greater than 1 lying around somewhere in the Haskell libraries, but this does
not seem to be the case. Instead, there’s a flipped composition (&) in Data.Function, but it has fixity infixr 0
which means we’d need to parenthesize it

prompt "How many frogs? " <&> (read & manyFrogs) >>= putStr

or, we could remember our functor laws, and apply them in the less often used direction, we arrive at the pleasing
form

prompt "How many frogs? "
<&> read
<&> manyFrogs >>= putStr
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The module Data.Function also defines (&) as simple backward application, with fixity infixr 0, so it could
be used in a processing pipeline at the cost of an extra set of parentheses using (>>=) and <&>. We can summarize
this in a very simple way. If you’re building a pipeline around values in a monad m, and you want to bolt another
machine onto the pipeline, select the correct left-to-right compositional operator based on the type of that machine:

Type Operator
m a -> m b (&)
a -> b (<&>)
a -> m b (>>=)

Understand, you’ll probably need to import Data.Function and Data.Functor, but this is a small price to pay.

Exercise 14.1 Write a Haskell program enumerate which processes standard input, adding line numbers. E.g., if you
have a file numbers.txt containing:

one
two
three
four
five
six
seven
eight
nine
ten

then

$ ./enumerate < numbers.txt

produces:

1. one
2. two
3. three
4. four
5. five
6. six
7. seven
8. eight
9. nine
10. ten
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Hint: look at the lines and getContents functions in the Prelude.

For extra credit, add the minimum number of spaces before each letter so that the decimal points line up, i.e.,

1. one
2. two
3. three
4. four
5. five
6. six
7. seven
8. eight
9. nine
10. ten

Standard IO

We start by considering a simple programming task: reading a file, and converting it to upper case. We call this
AOL-ification, in honor of the old pre-internet AOL community, whose internal email system was UPPERCASE
ONLY. When the internet was opened up to the public, AOL became an ISP, i.e., an internet service provider. This
enabled AOL users to send email to a much larger community, albeit in UPPERCASE ONLY. Annoying, but it
does provide us a simple programming task.

The UNIX operating system introduced a simplified mechanism for dealing with IO, the notion of standard IO.
This consisted of a predefined standard input, standard output, and standard error output, which were available to
any command-line program. These standard inputs and outputs could be associated with files by redirection, and
programs that processed standard input, producing standard output, were known as filters, and could be composed
at the command-line level by pipes. These ideas have been borrowed by almost all subsequent operating systems.

Haskell provides a number of functions for reading from standard input, e.g., getChar, getLine, and getContents,
which read progressively larger chunks of standard input, and putChar and putStr for output. We can write a
standard IO based AOLify program very simply:

-- | AOLify -- read stdin, capitalize, and write to stdout

module Main where

import Data.Char (toUpper)

main :: IO ()
main = do

input <- getContents
let output = map toUpper input
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putStr output

This code seems almost too simple to be worth simplifying, but a few moments reflection suggests that we should
be able to eliminate input and output, arriving at something like this:

main = getContents <&> map toUpper >>= putStr

which certainly reduces the task to its essentials. But there’s an even better way. The task of writing a UNIX-
style filter is common, and so the Prelude defines a function interact :: (String -> String) -> IO ()
that reduces the problem of writing a UNIX-style filter to the problem of defining a (pure) function that maps input
strings to output strings. Using this, we can simply write

main = interact $ map toUpper

and be done with it.

Simple IO

Of course, there’s more to IO than user interaction. There are also files on disk, network connections, etc. Haskell’s
Prelude has a number of functions for dealing with common file interactions, specifically

type FilePath = String

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()
appendFile :: FilePath -> String -> IO ()

The use of FilePath doesn’t provide any type safety, but it does help us understand our intentions.

As a practical illustration, we’ll do a simple version of UNIX’s cat utility. Our goal is to write a program so that a
command like

$ ./cat foo.txt bar.txt

Will result in the contents of foo.txt and bar.txt being written on standard output. In this, we will only use
readFile, but the other functions have similar use. Here’s a first, naïve, solution:

-- | A simple version of the UNIX 'cat' program
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module Main where

import System.Environment

-- | Process a list of files, writing the contents of each to standard output.

outputFiles :: [FilePath] -> IO ()
outputFiles [] = pure ()
outputFiles (f:fs) = do

content <- readFile f
putStr content
outputFiles fs

main :: IO ()
main = do

args <- getArgs
outputFiles args

Weuse getArgs to extract the argument list, and then the processing of that list is done by the (recursive) outputFiles
function. This works exactly as expected.

We’ll play with this a bit, as is our practice. We can eliminate the ephemeral values content and args by introducing
bindings, and then η-reducing. This gives us:

outputFiles (f:fs) = do
readFile f >>= putStr
outputFiles fs

main = getArgs >>= outputFiles

which is pretty simple.

But at some level, we’re asking outputFiles to do two different things: one is to output a file given its name, the
other is to process a list. It would be nice to factor this, so that

outputFile :: FilePath -> IO ()
outputFile path = readFile path >>= putStr

and then to use outputFile, and then to rely on standard functions to process the list. The standard map function
almost works, except that map outputFile :: [IO ()], which isn’t the type we’re looking for. There’s a nice
function mapM :: Monad m => (a -> m b) -> [a] -> m [b] (the actual type is slightly more general) that can
be thought of as a monadic version of map. The following doesn’t quite work:

main = do
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args <- getArgs
mapM outputFile args

But only because the last line has type [()] rather than (). We can add pure (), or use mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
which does the job for us. Finally, we can do our usual trick for eliminating the ephemeral variable args, resulting
in

main = getArgs >>= mapM_ outputFile

Which is remarkably terse.

Handle Based IO

The preponderance of your IO needs can be handled with the high-level IO functions and concepts we’ve seen so far.
This is quite different from other languages, in which IO is typically done via lower-level interfaces. Such interfaces
exist for Haskell, and you should be aware of them, as they are sometimes essential.

A basic concept is that of a Handle, which is a Haskell type that represents a file, or file like-object (e.g., one of
the Standard IO streams). There are a large number of functions for handle-based IO. Some of these are simply
handle-based versions of functions we’ve seen before, e.g.,

hGetContents, hGetLine :: Handle -> IO String
hPutStr, hPutStrLn :: Handle -> String -> IO ()

In addition to these functions, there are constants that represent the three Standard IO streams:

stdin, stdout, stderr :: Handle

We can create a Handle associated with a file and a particular IO mode by using:

data IOMode
= ReadMode
| WriteMode
| AppendMode
| ReadWriteMode

openFile :: FilePath -> IOMode -> IO Handle

Once we’re done with a handle, it should be closed using
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hClose :: Handle -> IO ()

Closing a file will write out the buffer, and release the kernel resources associated with the file. There are typically
finite limits on how many files can be opened at any one time, both on a per-process and per-machine basis. These
limits used to be small, but they’re now quite large. Even so, it’s better to develop the right programming disciplines
from the beginning. One of the nice things about Haskell, and its IO monad, is that it’s possible to write functions
like:

withFile :: FilePath -> IOMode -> (Handle -> IO r) -> IO r

This is a file that opens a file obtaining a handle, performs the result of applying the action function to the handle,
closes the handle, and then returns the result of the action. We don’t need to implement withFile, because it’s
already done in System.IO, but it would be easy enough to write ourselves. We’ll see a similar function a bit later
in the lecture.

One reason to use handle-based IO is that there are no special-purpose functions for dealing with stderr, although
it’s easy enough to just write them yourself:

putErrStr :: String -> IO ()
putErrStr = hPutStr stderr

Another reason is that you want control over the buffering choices that are being made. We’ve already seen
hFlush :: Handle -> IO () used to force out buffered output. But we’ll also often want finer control of stdin.
The System.IO module defines:

data BufferMode
= NoBuffering
| LineBuffering
| BlockBuffering (Maybe Int)

In NoBuffering mode, input is made available immediate, and output is written immediately. Thus, for example,
you might want NoBuffering if you’re writing an interactive game, and want access to player input in real time.
Alternatively, LineBuffering waits until a full line of input is available, and so makes the usual line-editing func-
tionality available. On output, LineBuffering buffers until a line-feed character, whereas BlockBuffering allows
for larger buffers, and so offers greater performance, but isn’t suitable for interactive use.

Buffering is manipulated using the functions:

hGetBuffering :: Handle -> IO Buffering
hSetBuffering :: Handle -> BufferMode -> IO ()
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It is often convenient to have ”stack-oriented” functions to manage resources, and we can think of the buffering
mode as a kind of resource that we want to acquire and release. To that end,

withBuffering :: Handle -> BufferMode -> IO a -> IO a
withBuffering handle mode action = do

savedMode <- hGetBuffering handle
hSetBuffering handle mode
result <- action
hSetBuffering handle savedMode
pure result

is often very useful. This can be especially important when using the interpreter to debug your code. It’s very
frustrating to exit the program you’re running, only to find that the interpreter is in an unexpected buffering mode.

Another reason for dealing with handle-based IO is to deal with a feature of Haskell that is sometimes a bug. Some
of Haskell’s IO functions, notably getContents, hGetContents, readFile are implicitly lazy, i.e., they return
immediately with a String, but the String is built and IO performed on an as-used basis. This can be really great:
often very naïve programs will be able to process huge files without using much memory. But it can be a problem
in that IO is not as atomic as might be wished. This might be an issue, e.g., if you read a preferences file, and write
it back out. If the writing is happening concurrently with the reading, the file can easily get corrupted, resulting in
hard to diagnose crashes. Lower-level routines (even if that only means using getLine and friends can avoid this
problem.
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Chapter 15

Case Study: The Animal Game

In our lectures, we often focus on programming ideas and techniques, but not on programs per se. It’s sometimes
nice to see the programming ideas applied in more substantial examples than we can work out in class. In this
supplemental lecture, we develop a complete program for the Animal Game.

The Game

The animal game is a two player game, in which the answering player thinks of an animal, and the questioning player
asks a series of yes/no questions about the animal that the questioning player is thinking of. At some point, the
questioning player believes they have enough information to make a guess. If the guess is correct, the questioning
player wins; if the guess is incorrect the answering player wins.

The animal game is a standard example in computer science. We write a program that plays the questioning player
against a human answering player. What makes this interesting is that the questioning player learns through repeated
plays of the game, and so becomes progressively more difficult for the answering player to beat.

Data Representation

We will represent the questioner’s knowledge base of the animal kingdom by a binary search tree, in which the
internal nodes contain a yes/no question, and two subtrees corresponding to yes and no answers to that question,
and leaf nodes that correspond to guesses, i.e., animals.

data YesNoTree
= Question

{ query :: String
, yes, no :: YesNoTree
}

| Answer
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{ final :: String }
deriving (Show, Read)

One of the trickier aspects to this program is that we need to be able to create a mutated tree that incorporates new
knowledge into an existing YesNoTree. To that end, we introduce an auxiliary data structure, a YesNoView, which
is an instance of Gerárd Huet’s zipper design pattern to the simple case of a binary tree. (You should be able to
download the paper if you’re browsing from the uchicago.edu domain, but be aware that it’s written in ML rather
than Haskell.)

data YesNo = Yes | No

data YesNoView = YesNoView
{ current :: YesNoTree
, context :: [(YesNo,String,YesNoTree)]
}

The idea is that a YesNoView encodes both a current node of the tree, and the information needed to rebuild the tree
from that node. Each of the (YesNo,String,YesNoTree) triples in the context indicated the direction in which
we descended into the tree, i.e., by the ’yes’ alternative, or the ’no’ alternative, the query at that node, and the other
child.

We navigate through such a tree in one of three directions: up, to our parent; downYes, to our ’yes’ child; and
downNo, to our ’no’ child.

downYes :: YesNoView -> YesNoView
downYes (YesNoView (Question query_ yes_ no_) ctx) =

YesNoView yes_ ((Yes,query_,no_) : ctx)
downYes _ =

error "call to downYes on an answer node of a YesNoTree."

downNo :: YesNoView -> YesNoView
downNo (YesNoView (Question query_ yes_ no_) ctx) =

YesNoView no_ ((No,query_,yes_) : ctx)
downNo _ =

error "call to downNo on an answer node of a YesNoTree."

up :: YesNoView -> YesNoView
up (YesNoView focus ((yn,query_,saved) : ctx)) = case yn of

Yes -> YesNoView (Question query_ focus saved) ctx
No -> YesNoView (Question query_ saved focus) ctx

up _ =
error "call to up on an YesNoView with empty context."

Note that we “mutate” the tree by replacing the current field of a YesNoView with another value.
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We have enter :: YesNoTree -> YesNoView, which allow us to initialize a YesNoView from a YesNoTree, with
the root as the current node,

enter :: YesNoTree -> YesNoView
enter tree = YesNoView tree []

and exit :: YesNoView -> YesNoTree, which returns the full tree from a view:

exit :: YesNoView -> YesNoTree
exit (YesNoView tree []) = tree
exit ynv = exit (up ynv)

IO Interaction

We’ve already seen a couple of functions that will help usmanage IO interaction, withBuffering :: Handle -> BufferMode -> IO a -> IO a
which enables us to perform an IO action within within a context that sets a buffering mode on a particular Handle,
and prompt :: String -> IO String.

withBuffering :: Handle -> BufferMode -> IO a -> IO a
withBuffering handle mode action = do

savedMode <- hGetBuffering handle
hSetBuffering handle mode
result <- action
hSetBuffering handle savedMode
pure result

prompt :: String -> IO String
prompt msg = do

putStr msg
hFlush stdout
withBuffering stdin LineBuffering getLine

Note that this version of the prompt command ensures that the inner getLine call occurs in a context where the
buffering mode is set to LineBuffering.

We’re also going to be asking a lot of questions that have yes/no answers, indeed, this is going to be the dominant
mode of user interaction. As such, we want it to be as frictionless as possible. This is going to result in a different
buffering approach. Once we prompt for an answer, we’ll read a single character in NoBuffering mode, so that it
is immediately available to us. If we get an answer we can’t interpret, we’ll re-prompt.

yesNo :: String -> IO YesNo
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yesNo msg = do
putStr $ msg ++ " [y,n] "
hFlush stdout
answer <- withBuffering stdin NoBuffering getChar
when (answer /= '\n') $ putChar '\n'
case toLower answer of

'y' -> pure Yes
'n' -> pure No
'\n' -> yesNo msg
_ -> do

putStrLn 'Please answer y for yes, or n for no.'
yesNo msg

This kind of code is often quite delicate, and it’s worth understanding why each line is present. Note in particular
that because we get the character immediately, there’s been no line feed (unless, of course, the character is itself the
newline character), so we have to supply this ourselves.

Game Mechanics

A basic building block is the playOneGame :: YesNoView -> IO YesNoView function, which as its name and
type suggests, represent the play of a single instance of the animal game, returning a possibly updated game tree.

playOneGame :: YesNoView -> IO YesNoView
playOneGame ynv = case current ynv of

question@Question {} -> yesNo (query question) >>= \case
Yes -> playOneGame (downYes ynv)
No -> playOneGame (downNo ynv)

answer -> yesNo ('Is your animal ' ++ final answer ++ '?') >>= \case
Yes -> do

putStrLn 'You lose.'
pure ynv

No -> do
putStrLn 'You win!'
newAnimal <- prompt 'Your animal is > '
newQuestion <- prompt $

'Please state a question that is true of '
++ newAnimal
++ ' but false of ' ++ final answer ++ ' > '

let newNode =
Question newQuestion (Answer newAnimal) answer

pure $ ynv { current = newNode }

One reason for this choice of type signature is that it enables playOneGame to call itself recursively, which it does
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as at each Question node. A common pattern in this code is to extract a value from IO, and then do an immediate
pattern match on that variable. Using just standard Haskell syntax, we’d have to write a lot of code like

ans <- yesNoQuestion "Yes or no?"
case ans of

Yes -> ...
No -> ...

or

yesNoQuestion "Yes or no?" >>= \ans -> case ans of
Yes -> ...
No -> ...

Either way, we had to introduce the variable ans, and we can’t get rid of it. By adding the declaration

{-# LANGUAGE LambdaCase #-}

at the top of the module, we introduce the LambdaCase extension, which allows us to write:

yesNoQuestion "Yes or no?" >>= \case
Yes -> ...
No -> ...

It’s a small thing, but we do so much of it in this program that it seems worthwhile to do it well.

To play multiple games, we have playGames :: YesNoTree -> IO YesNoTree. Note that this function traffics
in YesNoTree, not YesNoView.

playGames :: YesNoTree -> IO YesNoTree
playGames start = do

restart <- exit <$> playOneGame (enter start)
yesNo "Would you like to play again?" >>= \case

Yes -> playGames restart
No -> pure restart

Note that playGames essentially implements a “bottom-test loop,” which is an iterative programming construct that
is guaranteed to run its body once.

The swizzling back and forth between YesNoTree and YesNoView may seem wasteful, but it’s important to keep
in mind that enter . exit is not the identity on YesNoTree, as it resets the current node to the root. Stated
metaphorically, it leaves us with the zipper zipped-up.
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Serialization

While a program that learns is interesting, we can do this one better by persisting in our learning. Thus, if you play
the animal game, quit, and then come back to it later, the knowledge it gained in the first play is still available. The
game get harder.

To that end, we use a simple serialization strategy. We use the file .animals in the user’s home directory to store a
text representation of the YesNoTree. Using default Read and Show instances makes this very easy.

gameDBPath :: IO FilePath
gameDBPath = do

home <- getHomeDirectory
pure $ home </> ".animals"

loadGameDB :: IO YesNoTree
loadGameDB = do

dbPath <- gameDBPath
doesFileExist dbPath >>= \case

True -> readMaybe <$> S.readFile dbPath >>= \case
Just db -> pure db
Nothing -> do

putStrLn 'Stored database corrupt, using default.'
pure startTree

False -> pure startTree

saveGameDB :: YesNoTree -> IO ()
saveGameDB tree = do

dbPath <- gameDBPath
writeFile dbPath (show tree)

One bit of trickiness here is that Haskell’s readFile function is lazy. We use the readFile function from the
module System.IO.Strict. This module isn’t a part of the Haskell Platform distribution, and has to be installed
using the cabal tool:

$ cabal install strict

One further nuance is that we use readMaybe rather than read. This function (which is found in Text.Read)
indicates a parsing failure by returning Nothing, allowing for more graceful error handling.
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Exceptions, and Main

We could finish this code by

main :: IO ()
main = loadGameDB >>= playGames >>= saveGameDB

a particularly simple and pleasing end to the program, but it’s possible for the user to cause an ugly crash, by
typing ^-D in response to prompt. This causes getLine to throw an exception. We won’t cover exceptions in this
course, but there are a couple of things to know: (1) exceptions are caught in the IO monad, but an of a number
of functions, including catch, handle, and try; (2) these functions rely on an Exception type class, and their use
requires somehow specifying a specific type that implements this type class. Oddly enough, this is often the hard
part of the exercise. We use

catchIO :: IO a -> (IOException -> IO a) -> IO a
catchIO = catch

a type-restricted version of catch, which catches the IOException type.

main :: IO ()
main = do

putStrLn "Welcome to the Animal Game!\n"
catchIO (loadGameDB >>= playGames >>= saveGameDB) $ \_ ->

putStrLn "\nIO exception occurred, database not saved."
putStrLn "Goodbye."

• The Animal Program (Haskell source)
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Chapter 16

Monoids
(Chapter contributed by RC)

A semigroup is a pair (S, op : S × S → S), where the binary operator op is associative.

A monoid is triple (S, op : S × S → S, id ∈ S), where the binary operator op is associative and where id serves as
left and right identity operands. We will see three Haskell typeclasses — Monoid, Alternative, and MonadPlus
— that encapsulate this notion.

Semigroup and Monoid

We have seen how the foldr function provides a general way to ”crunch” a list of values down to a single result. A
few simple examples:

> foldr (+) 0 [1,2,3,4,5]
15
> foldr (*) 1 [1,2,3,4,5]
120
> foldr (:) [] [1,2,3,4,5]
[1,2,3,4,5]
> foldr (++) [] [[1,1],[2,2],[3,3],[4,4],[5,5]]
[1,1,2,2,3,3,4,4,5,5]
> foldr (&&) True [True,True,True,False]
False
> foldr (||) False [True,True,True,False]
True
> foldr (||) True [True,True,True,False]
True
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We will now consider Haskell typeclasses that describe values that can result from this crunching process. We will
start with the latter. In a subsequent lecture (Chapter 17), we will describe types, beyond just lists, that can be
crunched down to a single result.

The Semigroup typeclass (defined in Data.Semigroup) consists of types that have an associative binary operation,

class Semigroup s where
(<>) :: s -> s -> s

sconcat :: [s] -> s
sconcat [] = undefined
sconcat [x] = x
sconcat (x:xs) = x <> sconcat xs

where (<>) is the associative binary operator. Note that (<>) is minimal complete for Semigroup, and that
sconcat, while formally a part of the Semigroup class, isn’t declared in the Prelude, but in Data.Semigroup.

The Monoid typeclass (defined in Data.Monoid) consists of types that have an associative binary operation with
identity,

class Semigroup m => Monoid m where
mempty :: m
mappend :: m -> m -> m
mappend = (<>)

mconcat :: [m] -> m
mconcat = foldr mappend mempty

where mempty is the identity, and mappend is the associative binary operator. An instance of Monoid must define
mempty; mappend defaults to (<>). The reason that mappend appears at all Monoid is historical; in pre-8.4 versions
of Haskell, Semigroup was not a superclass of Monoid. When the change was made, the mappend was kept around
for backward compatibility with existing code. (Just in case you come across some older code examples, back then,
(<>) = mappend was defined as an infix operator in Data.Monoid.) Note that mempty is mimimal complete for
Monoid.

Notice that because the member signatures refer to the variable m in places where values are required (and, further-
more, because only ground types are inhabited by values), the kind of m is *. That is, only ground types (as opposed
to type operators) can be Monoids.

The names mempty and sappend/mappend work well for the List instance, which we will see below, but not as well
for many other Monoids whose identities and operators have little to with ”emptiness” or ”appending.” Nevertheless,
these are the names and we will learn to live with them (or, in the case of the latter, forgo in favor of (<>)).

The monoid laws can be expressed as, for all values a, b, and c of a monoid m,
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• a <> (b <> c) == (a <> b) <> c (associativity),

• a <> mempty == a (right identity), and

• mempty <> a == a (left identity).

Exercise 16.1 Among the seven example calls to foldr above, which binary operators and identities (the first and second
arguments to foldr, respectively) do not constitute monoids, according to the definitions and laws just discussed?

List

The List instance is straightforward and illustrates why the Monoid methods were so named:

instance Semigroup [a] where
(<>) = (++)

instance Monoid [a] where
mempty = []

-- mappend = (++)

Notice how, based on the surrounding context, Haskell infers what the types of mempty and (<>) should be and
retrieves the implementations from the List instance appropriately:

> [1,2] <> mempty <> [3,4,5] <> [6]
[1,2,3,4,5,6]
> foldr mappend mempty [[1,2],[],[3,4,5],[6]]
[1,2,3,4,5,6]
> mconcat [[1,2],[],[3,4,5],[6]]
[1,2,3,4,5,6]

Sum and Product

There are two useful ways of defining a monoid on numbers: (+) paired with the identity element 0 and (*) paired
with the identity element 1. However, if we were to define an instance of the form

instance Num a => Semigroup (Num a)
...

instance Num a => Monoid (Num a)
...
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we could represent only one of these two monoids. To get around this obstacle, Data.Monoid defines two wrapper
types for numbers, called Sum and Product, which capture the different monoids on numbers:

newtype Sum a = Sum { getSum :: a } deriving (...)

instance Num a => Semigroup (Sum a) where
Sum x <> Sum y = Sum (x + y)

instance Num a => Monoid (Sum a) where
mempty = Sum 0

newtype Product a = Product { getProduct :: a } deriving (...)

instance Num a => Semigroup (Product a) where
Product x <> Product y = Product (x * y)

instance Num a => Monoid (Product a) where
mempty = Product 1

We can now choose between the two Monoids by explicitly wrapping and unwrapping numbers (without any addi-
tional run-time overhead, due to the use of newtype in the type definitions):

> getSum . mconcat . map Sum $ [1..6]
21
> getProduct . mconcat . map Product $ [1..6]
720

Any and All

Similarly to numbers, there are two Monoids on booleans, which are defined by way of two wrapper types:

newtype All = All { getAll :: Bool } deriving (...)

instance Semigroup All where
All x <> All y = All (x && y)

instance Monoid All where
mempty = All True

newtype Any = Any { getAny :: Bool } deriving (...)

instance Semigroup Any where
Any x <> Any y = Any (x || y)
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instance Monoid Any where
mempty = Any False

The following examples exhibit the same functionality as calling the all id and any id functions from the Prelude:

> getAll . mconcat . map All $ []
True
> getAny . mconcat . map Any $ []
False
> getAll . mconcat . map All $ [True,True,True,False]
False
> getAny . mconcat . map Any $ [True,True,True,False]
True

Maybe, First, and Last

There are many other useful Monoids, besides the common ones on lists, numbers, and booleans above. For example,
the following derived instance ”lifts” all Monoids over a to Monoids over Maybe a:

instance Semigroup a => Semigroup (Maybe a) where
Nothing <> m = m
m <> Nothing = m
Just m1 <> Just m2 = Just (m1 <> m2)

instance Monoid a => Monoid (Maybe a) where
mempty = Nothing

Furthermore, it is often useful to work with alternative versions of Maybe Monoids, namely, where the binary
operator returns the first and last non-Nothing values, if any, in a list of Maybe values. The Monoid instance for
Maybe is already ”taken,” so the First and Last wrapper types are defined to provide each of these two choices,
and can be used as follows:

> getFirst . mconcat . map First $ [Just 1, Nothing, Just 3]
Just 1
> getLast . mconcat . map Last $ [Just 1, Nothing, Just 3]
Just 3

Notice that these two instances make sense even when the underlying type is not a Monoid

Exercise 16.2 Without first peeking at the implementations in Data.Monoid, fill in the definitions below.
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newtype First a = First { getFirst :: Maybe a } deriving (Show)
newtype Last a = Last { getLast :: Maybe a } deriving (Show)

instance Semigroup (First a) where
...

instance Monoid (First a) where
...

instance Semigroup (Last a) where
...

instance Monoid (Last a) where
...

Exercise 16.3 Note that without constraints on the underlying types s and t, Either s t, unlike Maybe a, is not an
element of the Monoid typeclass. Explain the obstruction.

Endo

And one more Monoid for now, endomorphisms under composition:

newtype Endo a = Endo { appEndo :: a -> a }

instance Semigroup (Endo a) where
Endo f <> Endo g = Endo (f . g)

instance Monoid (Endo a) where
mempty = Endo id

Alternative

The Monoid typeclass is useful but describes only ground types. What about type operators that also exhibit monoidal
structure? For example, recall that we defined a wrapper type for Maybe called First that constituted a Monoid
with an mappend operator that returns the first (leftmost) non-Nothing value.

> getFirst $ First (Just 1) <> First (Just 2)
Just 1
> getFirst $ First (Just 1) <> First Nothing
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Just 1
> getFirst $ First Nothing <> First (Just 2)
Just 2

We might like to describe this monoidal structure directly for Maybe even though it is not a ground type. The
Alternative class describes Applicative functors f that also exhibit monoidal structure.

class Applicative f => Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a

Notice the correspondence between empty and (<>)| in Applicative to mempty and (<>) in Monoid, respectively.
Unsurprisingly, an Alternative type f ought to satisfy all of the same laws as Monoids... in addition to the ones
for Applicative... in addition to the ones for Functor!

The Maybe instance for Applicative is quite like the First a instance of Monoid:

instance Alternative Maybe where
empty = Nothing
Nothing <|> r = r
l <|> _ = l

And now we can write the previous examples directly in terms of the Maybe monoid (Alternative):

> Just 1 <|> Just 2
Just 1
> Just 1 <|> Nothing
Just 1
> Nothing <|> Just 2
Just 2

There are many other applicative functors with monoidal structure. For example, Alternative types are quite
handy when writing parsers, as we shall see later in the course.

There’s a handy library function in Control.Monad that generalizes the guardMaybe function we saw several
lectures ago:

guard :: Alternative f => Bool -> f ()
guard True = pure ()
guard False = empty

140



Exercise 16.4 The function mconcat :: Monoid a => [a] -> a combines a list of Monoids. For example:

> getFirst . mconcat . map First $ [Just 1, Just 2]
Just 1
> getFirst . mconcat . map First $ [Just 1, Nothing]
Just 1
> getFirst . mconcat . map First $ [Nothing, Just 2]
Just 2

Implement a function

altconcat :: Alternative f => [f a] -> f a

that combines a list of Alternatives. Once defined, you will be able to use altconcat as follows:

> altconcat [Just 1, Just 2]
Just 1
> altconcat [Just 1, Nothing]
Just 1
> altconcat [Nothing, Just 2]
Just 2

MonadPlus

There are some Monad types that are also Alternatives, a combination captured in the MonadPlus typeclass:

class (Alternative m, Monad m) => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

which the documentation describes as “Monads that also support choice and failure,” but which we might prefer
to think of as a monoidal monad. Indeed, notice that the class constraints require that a MonadPlus be a Monad
plus an Alternative (recall that the Alternative type class describes single-argument type constructors that are
monoids, as opposed to Monoid which describes ground types that are monoids).

As the documentation states, the minimal completion definition for MonadPlus is nothing! Indeed, the default
definitions say it all:

mzero = empty
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mplus = (<|>)

So, to make our friend Maybe an instance of MonadPlus, the instance declaration is simpler than trivial, it’s empty:

instance MonadPlus Maybe

Notice the lack of the where keyword.

This is the first time we’ve seen a type class that doesn’t require anymethods to be implemented. So, what’s the point?
Well, one explanation is that writing both constraints (Alternative m, Monad m) could get tedious after a while,
and so defining the MonadPlus class serves as a useful shorthand. This isn’t a bad idea, but it turns out the real explana-
tion is rather more incidental. Remember the history of the standard libary pre-7.10? Because Applicativewas not
a superclass of Monad, the constraints (Alternative m, Monad m) would not have been sufficient a ”monad-plus-
monoid.” Instead, the constraints needed to be (Applicative m, Alternative m, Monad m), which quickly
becomes unwieldy. Instead, MonadPlus was defined with the single class constraint Monad, disconnected from the
Applicative/Alternative geneology. With the restructuring of Monad in 7.10, (Alternative m, Monad m)
suffices to describe a ”monad-plus-monoid” and so the definitions come for free.

Recap

Monoid and Alternative both describe monoids, the former for types of kind * and the latter for those types of
kind * -> *. Note that the latter is also defined to be a subclass of Applicative, because the combination of these
two classes is often useful. MonadPlus simply combines Monad and Alternative and is a relic of older versions of
the language.

Semigroup m
| (<>) :: m -> m -> m
|

Functor f Monoid m
| fmap mempty :: m
| mappend = (<>) :: m -> m -> m
|
Applicative f --------- Alternative f
| (<*>) | empty :: f a
| pure | (<|>) :: f a -> f a -> f a
| |
Monad f --------------- MonadPlus f

(>>=) mzero = empty :: f a
return = pure mplus = (<|>) :: f a -> f a -> f a
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Chapter 17

Foldable
(Chapter with contributions from RC)

We’ve been using the foldr function to crunch lists, as if its type was

foldr :: (a -> b -> b) -> b -> [a] -> b

This is great, but there are other collection classes that order their elements, and so could be processed in conceptually
the same way. To that end, we have the Foldable type:

class Foldable t where
foldr :: (a -> b -> b) -> b -> t a -> b
...

which is where foldr actually lives. Let’s do a simple example another type that orders its elements, the BinaryTree
type we’ve seen before:

data BinaryTree a
= Empty
| Node (BinaryTree a) a (BinaryTree a)
deriving Show

We can write foldr for this type:

instance Foldable BinaryTree where
foldr f acc Empty = acc
foldr f acc (Node left a right) =
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foldr f (f a (foldr f acc right)) left

The equation for foldr f acc (Node left a right) takes a little thinking, but this form is easy to derive if
you understand that foldr builds its result value from right-to-left.

The Foldable type class defines a number of other useful functions, e.g.,

class Foldable t where
foldr :: (a -> b -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl :: (b -> a -> b) -> b -> t a -> b
foldl1 :: (a -> a -> a) -> t a -> a
fold :: Monoid m => t m -> m
foldMap :: Monoid m => (a -> m) -> t a -> m
toList :: t a -> [a]
...

The foldl function does a left-to-right crunching of the list, and is often useful in processing very large data structures
that are built lazily. The variants foldr1 and foldl1 deal with simple, monoid-like folds over non-empty lists
(obviating the need for an explicit identity).

The Foldable type class includes many other functions we’ve been thinking of as list-specific, e.g., length, elem,
minimum, maximum, sum, and product. A moment’s reflection will reveal that each can easily be written in terms
of foldr, and so their greater generality should not be a surprise.

The fold and foldMap functions deal with the case where the combining function has type m -> m -> m for some
Monoid m. Default definitions exist so that a minimal complete definition of a Foldable instance must define either
foldr or foldMap. What is perhaps even more surprising is that it is often easier to write the instance definition
using foldMap, e.g.

instance Foldable BinaryTree where
foldMap _ Empty = mempty
foldMap f (Node left a right) =

foldMap f left <> f a <> foldMap f right

This is very natural: we process the recursive parts recursively, and combine the pieces using (<>).

What may be surprising in all of this is that functions like foldr and foldl may have different execution charac-
teristics, but because foldr is complete for Foldable, it is somehow possible to write foldl in terms of foldr.
How can this be? It is useful to understand the definition of foldMap in terms of foldr, and conversely.

To get foldMap from foldr is relatively straightforward:
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foldMap f container = foldr (\a b -> f a <> b) mempty container

Exercise 17.1 The code fairy would like you to η-reduce the definition above. She doesn’t want you to eliminate f, but
she thinks you should be able to eliminate a, b, and container without difficulty.

What is perhaps surprising is the other direction. The foldMap function requires an argument whose domain is a
Monoid, but there’s no such restriction on the combining function of foldr. Obviously, there’s some sort of trick.
A crucial observation is that if f is the combining function for foldr, then providing a single argument to f results
in a function of type b -> b, and this may remind you of the Endo type:

newtype Endo a = Endo { appEndo :: a -> a }

The type Endo a is a monoid instance, where (<>) is just composition under the wrapper, and mempty is Endo id.
Thus,

foldr f acc container = appEndo (foldMap (\a -> Endo (f a)) container) acc

i.e., we use foldMap to build a function, which, when applied to acc, reduces to foldr f acc container.

Exercise 17.2 It’s the code fairy again. Do I need to tell you what to do?

This may (should?) remind you of the difference list approach to implementing the Doc type from the Scalability
supplementary lecture (Chapter 23).
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Chapter 18

Traversable

The Traverable type class includes types that we can ”walk across.” It is a simultaneous generalization of Functor
and Foldable, and as we’ll see, it’s especially natural and easy to implement when the underlying type is also an
Applicative instance.

Let’s begin with a reconsideration of the Applicative type class, which we sometimes think of as a generalization
of the Functor type class that enables us to apply pure functions to zero or more fancy values, where what ”apply”
means depends on particular Applicative type. It is useful to think of Applicative types as defining a kind of
idiom.

Consider, for example, the function mapM :: Monad m => (a -> m b) -> [a] -> m [b]. We can implement
this function by ”walking along the list,” i.e., via a natural structural induction, as follows:

mapM f [] = pure []
mapM f (a:as) = pure (:) <*> f a <*> mapM as

McBride and Patterson, the authors of the original paper on Applicative, invented the idea of ”idiom brackets,”
where

⟦ f a_1 ... a_n ⟧

represents

pure f <*> a_1 <*> ... <*> a_n

If we rewrite the defining of mapM using idiom brackets, we have

mapM f [] = [[ [] ]]

146



mapM f (a:as) = [[ (:) (f a) (mapM f as) ]]

Contrast this, for a moment, with the definition of map:

map f [] = []
map f (a:as) = f a : map f as

If we rewrite the last line in prefix notation, we get

map f [] = []
map f (a:as) = (:) (f a) (map f as)

Thus, the definition of mapM is just the definition of map, but embellished with idiom brackets on the right-hand
side. Another way of describing this is that mapM is an effectful version of map, or alternatively, that map is a pure
version of mapM.

This may seem like abstract nonsense, but it makes an interesting point: mapM has the wrong constraint! We didn’t
need Monad, only Applicative. We’ll see in a bit why this hasn’t been fixed.

Our next thought about generalizing mapM is that we might be able to replace the [] type with a less restrictive type
class. This leads us to

class (Functor t, Foldable t) => Traversable t where
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

Note that traverse is mapM, but with just the right type constraints: we’ve moved from Monad to Applicative as
the constraint on the type of f, and we’re generalizing [] to t. In fact, the implementation of mapM in the Haskell
sources is just mapM = traverse!

But the curious thing is that creating instances of Traversable follows the pattern we established above for mapM.
We just “implement fmap,” and then put the left hand side of the definitions in idiom brackets, i.e., add pure and
(<*>) as needed.

Let’s do an extended example, using the BinaryTree type as before. As we’ll see, this involves an interesting and
unexpected difficulty.

We have the Foldable instance above, and we’ve done Functor before:

instance Functor BinaryTree where
fmap _ Empty = Empty
fmap f (Node left a right) =

Node (fmap f left) (f a) (fmap f right)
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Let’s remember that definition!

The traverse function is just an effectful fmap, intuitively,

instance Traversable BinaryTree where
traverse _ Empty = [[ Empty ]]
traverse f (Node left a right) =

[[ Node (traverse f left) (f a) (traverse f right) ]]

I.e., just the definition of fmap for this type, but with idiom brackets on the left. Of course, idiom brackets aren’t
part of Haskell syntax, so we have to translate them out:

instance Traversable BinaryTree where
traverse _ Empty = pure Empty
traverse f (Node left a right) =

Node <$> traverse f left <*> f a <*> traverse f right

Of course, it’s one thing to have this toy, and another to know how to play with it. Let’s consider a simple problem:
labelling the items in a container with an integer. To that end, we’ll use a little gadget in State:1

label :: a -> State Int (Int,a)
label a = do

ix <- get
modify (+1)
pure (ix,a)

We can then add labels to the values held in a Traversable container:

addLabels :: (Traversable t) => t a -> t (Int,a)
addLabels ta = evalState (traverse label ta) 1

With this:

> testTree
Node (Node Empty

1
(Node Empty 2 Empty))

3
(Node Empty

4

1RC: This forward reference to State (Chapter 20) is inessential. Skim the output below and proceed to the subsequent exercise, in which this
“throwaway” use of State will be thrown away.
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(Node Empty 5 Empty))
> addLabels testTree
Node (Node Empty

(1,1)
(Node Empty (2,2) Empty))

(3,3)
(Node Empty

(4,4)
(Node Empty (5,5) Empty))

> toList (addLabels testTree)
[(1,1),(2,2),(3,3),(4,4),(5,5)]

exactly as you might expect.

Exercise 18.1 The throwaway use of State here is a bit heavy-handed. Data.Traversable includes two functions,
mapAccumL and mapAccumR that perform state-based traversals, albeit with an explicitly exposed state. Rewrite addLabels
using one of the mapAccum{L,R} functions, rather than State.

Exercise 18.2 Let’s consider a different tree-based container class:

data MultiTree a
= Node [MultiTree a]
| Leaf a

This describes a tree, in which the values are contained in Leaf values, and the Node values can contain an arbitrary
number of sub-trees.

Implement the usual type classes for MultiTree: Eq , Ord, Functor, Applicative, Monad, Monoid (for MultiTree a),
Alternative, MonadPlus, Foldable, Traversable, at suitable kinds and with suitable constraints.

If you do this artfully, you’ll see sub-expressions like fmap . fmap in the definition of fmap, and traverse . traverse
in the definition of traverse. These happen because [] is a Functor and a Traversable, and both Functor and a
Traversable are closed under composition.

The Traversable type class is also the homes of another familiar function, sequence, which until recently had the
type:

sequence :: Monad m => [m a] -> m [a]

In Traversable, the specific use of lists is revised to account for any Traversable type t:

sequence :: Monad m => t (m a) -> m (t a)
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but here, as in the case of mapM, the implementation doesn’t require the full power of a Monad constraint, and so we
also have:

sequenceA :: Applicative f => t (f a) -> f (t a)

with

sequence = sequenceA

being merely a less generally typed version of sequenceA.

A Bit of Wisdom

There is a programming truism, evidently due to Tony Hoare but often attributed to Donald Knuth that’s well
worth knowing: Premature optimization is the root of all evil. There is considerable wisdom in this, but also a history
of it being applied foolishly.

For functional programmers, eschewing premature optimization often involves a natural preference for lists as an
all-purpose container class, even when they’re not entirely appropriate. Taking efficiency into consideration during
the design phase of a program is timely, not premature, optimization, even if lower-level optimization is not. But
we can usually get away with what otherwise would be a poor choice: by writing list-based code on a first pass,
and then generalizing it to be type class dependent rather than specifically list dependent, gradually decoupling our
program’s code from its data representation choices, and so making it possible to revisit those choices late in program
development, at a point when it would be positively painful in traditional languages.

The traverse function is a good example of this. Many a traverse has begun life as a mapM where the underlying
monad is IO. There’s a recurring pattern here: you build a list of values, and then you want to do some IO once for
each value on the list. If the IO action is simple, there’s no big deal: you use mapM, or traverse if you want to placate
the code fairy and/or facilitate future changes to data organization. But if you want to do anything complicated,
you pretty much have to define and name a function to pass as a first argument to either. There is a better way.

The Data.Traversable module has a variation of traverse called for, which takes its arguments in reversed
order. This allows you to write code that looks like this:

for listOfValues $ \value -> do
...

This is natural enough that it soon becomes a programming idiom for processing the values in a container.

For example, consider the “Collecting Permutations” problem from Lab 4. If we wanted to tackle this with more
advanced data structures, we might end up using Data.Map and Data.Set to build a map from sorted keys to the
set of words that generate that sort via:
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makePermutationMap :: [String] -> Map String (Set String)
makePermutationMap = Map.unionsWith Set.union . map makeEntry where

makeEntry word = Map.singleton (sort word) (Set.singleton word)

We could then build main as follows:

main :: IO (Map String ())
main = do

permMap <- makePermutationMap . getWords <$> getContents
for permMap $ \perms -> when (Set.size perms > 1) $ do

putStrLn . intercalate ', ' . Set.toList $ perms

In this case, the for iterates over the values of the Map, which is what this problem requires.

Of course, as our programmer’s eye develops, there’s a tendency to view the call to Set.toList with a bit of
skepticism. Why do we need to convert from one container class (Set) to another ([])? In this case, it’s because
intercalate only works with lists. But we easily implement intercalate in terms of foldr1, and then take ad-
vantage of the fact that foldr1 :: Foldable t => (a -> a -> a) -> t a -> a is based on Foldable rather
than [], mooting the need for translating the container from one form to the other:

for permMap $ \perms -> when (Set.size perms > 1) $ do
putStrLn . foldr1 (\x acc -> x ++ ", " ++ acc) $ perms

A Bit of Whimsy

One of the standard arguments for preferring Applicative over Monad whenever possible is that the composition
of Applicative types are also Applicative in a natural way, whereas the composition of Monad types is not
necessarily a Monad.

Recall that category-theoretic monads are defined in terms of join :: (Monad m) => m (m a) -> m a. The type
of sequenceA hints at the fundamental difficulty. If we had a natural operator commuteM :: (Monad m, Monad n) => m (n a) -> n (m a),
then we’d have a natural definition of join for the composed monads, as follows.

We start by undefining what we can’t define (am I the only one who recalls the disassociated press version of the
Gettysburg Address?!):

commuteM :: (Monad m, Monad n) => m (n a) -> n (m a)
commuteM = undefined

This may seem pointless, but we want to show that this is the only obstruction, which is remarkable given the
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parallels with sequenceA: all we’re missing is the Traversable instance for m!

Our goal is to show the we can start with m (n (m (n a))), and end with m (n a).

This sweeps under the rug a bit of the type traffic (we use Data.Functor.Compose’s Compose type to represent the
composition, and this requires unwrapping and re-wrapping), but gives the main idea.

• CommuteM
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Chapter 19

Writer, Reader

Background

We often think of monads as a mechanism for adding “effects” to our computations. E.g., if we want to add non-
determinism as an effect, we can do this by considering lists of results. Working within the list monad enables us
to use binding as a means of representing non-deterministic choice, and so hides the complexity by allowing the
programmer to focus on the non-deterministic choices made, and hides the mechanism for organizing those choices,
and assembling the results.

A complication comes from when we try to layer effects, e.g., we want to combine non-deterministic computation
with IO. The problem here is that, unlike functors and applicatives, monads don’t compose, i.e., there is no natural
way to define an instance

instance (Monad m, Monad n) => Monad (Compose m n)

A solution comes from the notion of monad transformers, a sophisticated approach that enables us to build layered
effects. The monad transformer library (mtl) defines a number of monad transformers. As the kind of a monad is
* -> *, it is unsurprising that the kind of a monad transformer is (* -> *) -> * -> *. For example, if we have
some sort of effect “foo,” we’ll have a monad transformer FooT, such that whenever m is a monad, then FooT m will
also be a monad, but one that layers the “foo” effect onto the effects of m.

Associated with each of the FooT transformers, is the class Foo = FooT Identity, which is a monad that has
only the “foo” effect. Doing things this way saves the library implementor some work, but it does incur a cost
on the ordinary programmer. If you make a type error in the context of a Foo monad, you’re liking to see errors
referring to FooT Identity, which can be disorienting, especially if you encounter them before you’ve seen monad
transformers, or understand how the Foo type constructor is implemented “under the hood.”

There’s also a type class MonadFoo which contains all of the functions and constants that we associate with the “foo”
effect, and naturally there’s a MonadFoo instance of FooT m. But the mad genius of the monad transformer library
is that for each of the other monad transformers (e.g., BarT), there’s a derived instance

153



instance MonadFoo m => MonadFoo (BarT m)

This has the consequence that when we add a “foo” effect, our work is not undone by adding additional (compatible)
effects. This matters! But this makes for a complicated library (briefly, the number of deriving instances definitions
has to grow quadratically with the number of base transformers). Again, this is a case where details of the imple-
mentation can unexpectedly “leak out,” as the functions we associate with Foo aren’t to be found in the definition
of Foo, but rather in the related MonadFoo type class.

Themechanics of making themonad transformer library work are not for the faint-of-heart, but fortunately, we don’t
need to learn them all at once. An important first step is to understand the kind of “effect” that each transformer adds.
We can study these effects in isolation by considering Foo = FooT Identity for each of the monad transformers,
and so learn the basic building blocks of the mtl.

A Motivating Example

The core of many programs are evaluators of some sort. If we want effects in our evaluation process, it’s common
to have evaluation monads. To make things easy we’ll construct an Expr n type, which is based on Num. We start
with

data UnaryOp
= Abs
| Signum
deriving (Show)

data BinOp
= Add | Subtract | Multiply
deriving (Show)

data Expr n
= Value n
| ApplyBinary BinOp (Expr n) (Expr n)
| ApplyUnary UnaryOp (Expr n)
deriving (Show)

Next, we’ll make Expr n an instance of Num:

instance Num n => Num (Expr n) where
(+) = ApplyBinary Add
(-) = ApplyBinary Subtract
(*) = ApplyBinary Multiply
abs = ApplyUnary Abs
signum = ApplyUnary Signum
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fromInteger = Value . fromInteger

This is a bit surprising. We’re not doing computational work here, but instead are using the Num instance as a
vehicle for translating from ordinary notation for simple expressions to values of our particular data type, and we’re
deferring the actual evaluation of the operations until later. A simple test shows what we’ve done.

> 1 + 2 * 3 :: Expr Int
ApplyBinary Add (Value 1) (ApplyBinary Multiply (Value 2) (Value 3))

We’re going to use a monad for evaluation, but because we have no effects, we’ll keep the monad as simple as possible:

type Eval = Identity

Our goal is to write a function eval :: (Num n) => Expr n -> Eval n. We’ll abstract out the patterns of
applying binary and unary operators via corresponding helper functions:

-- | Evaluate an expression in the Eval monad.

eval :: (Num n,Show n) => Expr n -> Eval n
eval (Value n) = pure n
eval (ApplyBinary Add e1 e2) = applyBinary (+) e1 e2
eval (ApplyBinary Subtract e1 e2) = applyBinary (-) e1 e2
eval (ApplyBinary Multiply e1 e2) = applyBinary (*) e1 e2
eval (ApplyUnary Abs expr) = applyUnary abs expr
eval (ApplyUnary Signum expr) = applyUnary signum expr

-- | Evaluate the result of applying a binary operator to a pair of expressions, in the
-- Eval monad.

applyBinary :: (Num n,Show n) => (n -> n -> n) -> Expr n -> Expr n -> Eval n
applyBinary op e1 e2 = do

v1 <- eval e1
v2 <- eval e2
let result = v1 `op` v2
pure result

-- | Evaluate the result of applying a unary operator to an expression, in the
-- Eval monad.

applyUnary :: (Num n,Show n) => (n -> n) -> Expr n -> Eval n
applyUnary op expr = do

v1 <- eval expr
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let result = op v1
pure result

These helper functions could be η-reduced, but let’s leave them as is for now.

With this machinery, we’re set up to do simple evaluation:

> runIdentity . eval $ 1 + 2 * 3
7

Exercise 19.1 The functions applyBinary and applyUnary are implemented in a very naïve way (albeit for a reason
that will become clear later). Show that they can be implemented as Applicative one-liners.

Writer

Let’s consider a simple effect we might want to add to our evaluator. We’d like to add a logging capability, so that
we construct a record of computational work as it’s being done.

The Writer w a represents a type where w is the type of the values we’re writing, and a is the type of the value
we’re computing.

For the purposes of this lecture, we’ll write our own Writer module, intended as a work-alike replacement for
Control.Monad.Writer for dealing with simple Writer types. If we do our work well (and of course we will),
we’ll be able to build our example program using our Writer module, and then simply replace the import of
Writer with Control.Monad.Writer, and have everything work, even though the implementation of Writer in
Control.Monad.Writer actually goes via WriterT. Values of Writer w a have to encode both a message of type
w, and a value of type a.

newtype Writer w a = Writer { runWriter :: (a,w) }

The “twist” in the order of w and a is a bit annoying, and will require constant attention as we code.

We start by providing a Functor instance, and it’s easy:

instance Functor (Writer w) where
fmap f (Writer (a,w)) = Writer (f a, w)

The Applicative instance hints at things to come. To implement <*>, we’ll take two values of this type, containing
both values and messages, and have to combine them. Combining the values is straightforward: one of the values is
a function of type a -> b, and the other is a value of type a. We simply apply the function to the value, and we’re
set. But what about the messages? We need a way to combine messages. Moreover, to implement pure, we need

156



a way to conjure up a message from thin air. To make both possible, we’ll add the constraint that w be a Monoid.
Thus

instance Monoid w => Applicative (Writer w) where
pure a = Writer (a,mempty)
(Writer (fa,fw)) <*> (Writer (xa,xw)) = Writer (fa xa, fw <> xw)

Exercise 19.2 Write a suitable Monad instance for Writer w.

Associated with this monad are a number of useful functions. We’ll use two in our example, the rest can be discovered
by reading the code and documentation.

-- | Construct a writer action with a given message.

tell :: w -> Writer w ()
tell w = Writer ((),w)

-- | An fmap-like function that acts on the message component of a writer action.

censor :: Monoid w => (w -> w) -> Writer w a -> Writer w a
censor f (Writer (a,w)) = Writer (a,f w)

Our completed Writer module (modulo the definition of (>>=)) is Writer.hs.

Example: WriterEval

We want to add logging to our evaluator. This requires a few changes, but perhaps less than you’d think. First, we
have to define Eval so that it takes into account writer effects.

type Eval = Writer [(String,String)]

The type of our message is a list of pairs. Lists are nice monoids, and the idea is that each of the pairs will correspond
to a line of output. Each pair encodes an operation that was applied, and a brief description. We’ve done this for a
reason...

It is often the case that we build a little private language on top of our effects, and we find it useful to have the
following:

-- | Log a message that an operation was performed.
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note :: String -> [String] -> Eval ()
note op ws = tell [(op,unwords ws)]

The note function uses tell to append a pair (with our intended interpretation) onto the message that’s being built.

Our eval function now has to be reoriented a bit to account for logging:

eval :: (Num n,Show n) => Expr n -> Eval n
eval (Value n) = pure n
eval (ApplyBinary Add e1 e2) = applyBinary "+" (+) e1 e2
...
eval (ApplyUnary Abs expr) = applyUnary "abs" abs expr
...

The difference is that we have to print out values in our log, and so our underlying numeric type needs to be an
instance of Show, and our “apply” functions are going to need a printable name for the function that’s being applied.
Note that would could have handled this in other ways, but this is simple.

applyBinary :: (Num n,Show n) => String -> (n -> n -> n) -> Expr n -> Expr n -> Eval n
applyBinary name op e1 e2 = do

v1 <- eval e1
v2 <- eval e2
let result = v1 `op` v2
note name [show v1,name,show v2,'=',show result]
pure result

Our implementation of applyBinary has to handle that extra string argument, produce an appropriate message,
which we do by adding the note line. The changes to applyUnary are similar.

We’re now set up to use this machinery, via the showWork function:

-- | Perform an evaluation in our Eval monad, formatting our message log,
-- and sending it to standard output.

showWork :: (Num n,Show n) => Expr n -> IO ()
showWork expr = do

let (result,output) = runWriter . eval $ expr
putStr . unlines . map snd $ output
putStrLn $ "The final answer is " ++ show result ++ "."

Now,

> showWork $ (2+3) * (4+5)
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2 + 3 = 5
4 + 5 = 9
5 * 9 = 45
The final answer is 45.

If only we’d had this in third grade. Of course, we don’t spend our entire life in third grade, but must in due
course move along to fourth. As you know, “showing your work” never meant to show the trivial steps, just the
hard/interesting ones. By fourth grade, it’s assumed you can do addition and subtraction, but you still have to show
your multiplication steps. We accomplish this with a simple change to the showWork function, slipping in a function
that filters the message list, retaining only the hard steps:

-- | Perform an evaluation in our Eval monad, filtering our message log down to the
-- hard steps, formatting it, and sending it to standard output.

showHardWork :: (Num n,Show n) => Expr n -> IO ()
showHardWork expr = do

let (result,output) = runWriter . censor (filter isHard) . eval $ expr
putStr . unlines . map snd $ output
putStrLn $ "The final answer is " ++ show result ++ "."
where

isHard (op,_) = op == "*"

Now,

> showHardWork $ 10 * 12 + 11 * 11
10 * 12 = 120
11 * 11 = 121
The final answer is 241.

We’re making good progress, and are now ready for fifth grade. Our example code is WriterEval.hs.

Reader

Let’s consider a different kind of effect. We’d like to beef up our evaluation system a little bit, allowing ourselves to
save and re-use computed values. To that end, we need to introduce variables and binding expressions to our Expr
type:

data Expr n
= ...
| Variable String
| Let [(String,Expr n)] (Expr n)
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Evaluation now needs to take place in a context that can maintain a list of bindings. For this, we introduce the
Reader type. The idea is that the type Reader e a will wrap a function of type e -> a. We use e, because we’re
thinking of this as the environment of the computation. As before, we’ll build a work-alike module Reader that
implements the Reader type directly, rather than via ReaderT.

newtype Reader e a = Reader { runReader :: e -> a }

We can recognize this as a wrapped version of (->) e, and simply lift the Functor, Applicative, and Monad
instances from there. As this involves nothing new (although some of the type swizzling is usually annoying), we’ll
elide it, but the definitions are in the source file.

Exercise 19.3 Write your own Functor, Applicative, and Monad for Reader e, and compare them with the defini-
tions in Reader.hs.

The standard Reader functions are

-- | Retrieve the environment.

ask :: Reader e e
ask = Reader id

-- | Run an action in a modified environment.

local :: (e -> e) -> Reader e a -> Reader e a
local f (Reader g) = Reader $ g . f

-- | Retrieve a function applied to the current environment.

asks :: (e -> a) -> Reader e a
asks f = Reader f

These seem quite simple, but they are powerful building blocks.

Example: ReaderEval

Our goal now is to implement a more powerful evaluator, one that allows the use of variables and bindings. For
now, our goal will be to evaluate

testExpr :: Expr Int
testExpr =

let x = Variable "x"
y = Variable "y"
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in Let [ ("y",10) ]
$ Let [("x", y + y)]

(x * x - y * y)

First, we define our evaluation monad

type Eval n = Reader [(String,n)] n

Note that the ‘environment’ in this case is a simple association list.

To keep our code simple, we’ll use a crashing lookup function,

-- | Look up a value in an association list, crashing if there is no such value.

lookup' :: String -> [(String,n)] -> n
lookup' var env = case lookup var env of

Just val -> val
Nothing -> error $ "Unknown variable " ++ var

This isn’t elegant, but trying to combine error handling via Maybe with the implicit environment of Reader puts us
into the position of trying to layer effects, and we’re not quite ready for that.

With this, we can handle variables easily

eval (Variable v) = asks (lookup' v)

All this does is to encapsulate the action of looking up the name of a variable in the (implicit) current environment,
which is exactly what we need.

Unsurprisingly, most of the work is in evaluating Let expressions. To do this we first extract the keys from the
binding list, then we evaluate the expressions to be bound from the binding list, then we create an association list of
the keys and values resulting from this evaluation, then we modify the existing environment to include the newly
bound variables, and finally we evaluate the body of the Let in the resulting environment. This sounds like a lot,
but it’s not so bad:

eval (Let bindings expr) = do
let ks = map fst bindings
vs <- mapM (eval . snd) bindings
local (zip ks vs ++) $ eval expr

Oddly enough, this is all we have to do. Add a couple of new lines to our Expr definition, set our evaluation
monad to be the appropriate Reader, add a couple cases to our eval function, and we’re pretty much set. Oh, and
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evaluating testExpr? All we have to do is use eval to create a value in the evaluation monad, use runReader to
extract the underlying function, and then apply it to an empty environment.

> runReader (eval testExpr) []
300

Profit!

ReaderEval.hs
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Chapter 20

State

20.1 State, I

The State type enables us to build computations that manipulate (hidden) state. I think of this as “elephant in the
room” programming, wherein we have a central, ubiquitous data structure that is so important that we can actually
clarify our code by hiding it. We will follow our on-going strategy of building a work-alike version of State, as a
stepping stone to StateT.

Haskell programmers will often describe Reader and Writer as complementary halves of State, it is a correspon-
dence that’s worth keeping in mind.

We define the State type as:

newtype State s a = State { runState :: s -> (a,s) }

The intuition here is that s is the type of the “state” of the computation, a value of which may be used and altered
over the course of a sub-computation that produces a value of type a. This is realized through a function that takes
a state value as an argument, and which returns a pair consisting of a value of the advertised binding type a, together
with the updated state. I find it helpful to think of this diagrammatically:
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Our first order of business is to make State s an instance of Functor:

instance Functor (State s) where
fmap f ma = State $ \s ->

let (a,t) = runState ma s
in (f a,t)

Here, the effect of the fmap f is to wrap up the old state transforming function in a new state transforming function
that calls the old state transforming function, capturing and adjusting its binding value.

Exercise 20.1 Show that the functor instance above can be re-written as

fmap f ma = State $ (\(a,s) -> (f a,s)) . runState ma

via a sequence of principled transformations. Hint: Think about how the expression let x = e1 in e2 can be written
using more basic expressions such as lambdas and function application.

For an extra challenge, it can be further reduced to

instance Functor (State s) where
fmap f ma = State $ uncurry ((,) . f) . runState ma

Next up in the type class hierarchy, we make State s an instance of Applicative:

instance Applicative (State s) where
pure a = State $ \s -> (a,s)
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af <*> aa = State $ \s ->
let (f,t) = runState af s

(a,u) = runState aa t
in (f a, u)

This is worth understanding. The pure instance produces a State function that doesn’t use or change the state
s, just passes it through, while making a available for binding through the first coordinate of the pair. The (<*>)
action takes the input state, and obtains the function f and an updated state t, then passes the updated state t to
aa, obtaining the argument a and an updated state u, and finally we package up the application f a and the final
state u into a pair. It is important to understand that (<*>) specifies an order in which the state is used: left-hand
(function) argument first, then the right-hand argument.

We can envision this process diagrammatically as follows:

Exercise 20.2 Show that we can implement pure as pure a = State $ (,) a.

A difficult challenge is to try to simplify the definition of <*> to first eliminate the let construct, and then to eliminate any
lambdas. It can be done!
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Finally (at least, finally in the first-pass sense), we make State s an instance of Monad:

instance Monad (State s) where
ma >>= f = State $ \s ->

let (a,t) = runState ma s
mb = f a
(b,u) = runState mb t

in (b,u)

The definition of (>>=) is quite similar in spirit to (<*>). As with (<*>), the state will flow through the expression
in left-to-right order. In the case of (>>=), the argument ma is performed first, obtaining a result a and an updated
state t, then the function f is applied to a, obtaining another monadic action mb, which is performed passing it the
state t, obtaining a result b and a final state u, which are packaged into the result pair (b,u) as before.

Exercise 20.3 Produce a diagram, analogous to the diagram for (<*>) above, that illustrates how (>>=) works.

Exercise 20.4 Show that the monad instance above can be re-written as

instance Monad (State s) where
ma >>= f = State $

(\(a,s) -> runState (f a) s) . runState ma

via a sequence of principled transformations.

For extra-credit, reduce it to

instance Monad (State s) where
ma >>= f = State $ uncurry (runState . f ) . runState ma

To use State effectively, we provide monadic functions that extract, inject, and modify the state, hence,

get :: State s s
get = State $ \s -> (s,s)

put :: s -> State s ()
put t = State $ \s -> ((),t)

modify :: (s -> s) -> State s ()
modify f = State $ \s -> ((),f s)

Note that the later two are essentially pure and fmap for the state component of a State s a value, while get
simply exposes the state to where is can be extracted via (>>=).
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Exercise 20.5 Unsurprisingly, the code transformation fairy isn’t entirely satisfied with the definition of put and modify,
and proposes

put t = State $ const ((),t)
modify f = State $ (,) () . f

Verify the code fairy’s work.

But now that we have this toy, what do we do with it? In a typical application, we’ll consider State s for some
application-specific type s, and we’ll use get and put to write application-specific state accessors and mutators.

Example: Turning Haskell into a 1980s era calculator

The Hewlett-Packard corporation made a name for itself by producing high-quality electronic scientific (and later,
financial) calculators which thoroughly disrupted the pre-existing economy of scientific calculation built on slide
rules. A novel feature of the HP calculators was their use of reverse polish notation (RPN), which involved the use
of an operand stack, together with operations that acted on that stack. This had the considerable virtue of simplifying
input handling, thereby allowing silicon to be devoted to other tasks, and HP calculators were justly famous for their
numerical precision and speed. With an RPN calculator, to add 1 to 2, you’d hit, 1, Enter, 2, and then, finally, +.
The more advanced models that started to appear in the 1980’s were programmable, in the sense that certain keys
could be programmed to execute a sequence of key strokes (possibly involving other programmable keys). With
these calculators, the operand stack was arguably the most important abstraction, but paradoxically, it was hidden
from view. Our goal is to write code that provides much of the feel of working with these early calculators, and
doing so requires that we hide the operand stack.

You can find a javascript simulator of an HP-35 calculator—the very calculator Professor Kurtz purchased used for
$100.00 in 1976 when he was an undergraduate.

This particular example will give us the opportunity to focus on the notion of abstraction barriers. These are a soft-
ware engineering technique whereby we decompose the problem into subproblems, with each sub-solution specifying
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a well-defined interface that completely determines the ways that other subproblems can interact with it. Haskell’s
module system provides excellent support for abstraction barriers, as we’ll see. Let’s start by taking the work that
we’ve just done building the State monad, and encapsulate it in a module called State (in State.hs).

Our next module will be the Calc module (in Calc.hs), in which we’ll define (and export) the basic functionality
of our calculator. A particular convention of our calculator will be that all of the calculator operations we export
will have the form kOperation for some operation.

We’ll start by defining the type associated with a simple calculation:

type CalcState = State [Double]

CalcState is intended for internal use, whereas the more restricted

type Calculation = CalcState ()

is intended for exported values.

Next, we define a couple of monadic functions that enable us to push and pop values off of the stack. We can think
of these as primitives, built on top of the still more primitive get and put functions:

pop :: CalcState Double
pop = do

stk <- get
case stk of

[] -> pure 0.0
x:xs -> do

put xs
pure x

push :: Double -> CalcState ()
push d = do

stk <- get
put (d:stk)

Note how our result is pure 0.0 when we have an empty stack. Intuitively, this is equivalent to viewing the stack
as being infinitely deep, and filled to the bottom with 0.0’s. Standard code transformations can result in surprising
concision:

push = modify . (:)

If we think in a somewhat more concrete way about how the State monad works, we can come up with the
following much more succinct definition:
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pop = state $ \s -> case s of
[] -> (0.0,[])
x:xs -> (x,xs)

At first, this feels a bit like both a typographical error and an abstraction barrier violation, but it’s neither, because
state is a standard part of the State interface:

state :: (s -> (a,s)) -> State s a
state = State

The push operation, which we think of as a stack primitive, is actually something we want to export, albeit under
a different name:

kEnter :: Double -> Calculation
kEnter = push

Next, we provide the basic arithmetic functions:

binOp :: (Double -> Double -> Double) -> CalcState ()
binOp op = do

y <- pop
x <- pop
push $ op x y

kAdd, kSub, kMul, kDiv :: Calculation
kAdd = binOp (+)
kSub = binOp (-)
kMul = binOp (*)
kDiv = binOp (/)

Notice how in binOp that if we’ve pushed the first operand first, that must mean that we’ll pop the second operand
first. Notice also the preference within a module for using the private push over the exported kEnter. This is not
required, but it does reflect differences in how with think about the problem: outside of the abstraction barrier, we
use the exported functionality, inside the abstraction barrier, we have unrestricted access to the functions defined at
that level (or exported from a lower level still).

Next, we need a little bit of code to allow us to actually run a Calculation.

perform :: Calculation -> Double
perform ma = fst $ runState (ma >> pop) []
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This is just a bit obscure. It might seem simpler conceptually to do this:

perform ma = head . snd $ runState ms []

The problem we solve with a final pop is that running ma might result in an empty stack, in which case the call
to head would raise an exception. A final pop action takes advantage of the error handling we’ve built into pop,
albeit while delivering the intended result as the value bound by performing the action, rather than as the top of
the resulting state. We can simplify this a bit further through use of a couple of convenience functions that are a
standard part of the State interface:

evalState :: State s a -> s -> a
evalState ma s = fst (runState ma s)

execState :: State s a -> s -> s
execState ma s = snd (runState ma s)

where evalState throws away the final state, evaluating to the final bound value, whereas execState throws away
the final bound value (often ()), evaluating to the final stack. With this, we write:

perform :: Calculation -> Double
perform ma = evalState (ma >> pop) []

With these, we can begin to write little programs that resemble old-school RPN calculations, e.g., here’s how we’d
compute (1+2)*3:

test :: Double
test = perform $ do

kEnter 1
kEnter 2
kAdd
kEnter 3
kMul

Now, part of the game in trying to simulate an RPN calculator is to avoid the use of explicit bindings except in the
definition of primitives in the Calc module. This is an issue if we want, e.g., to define a hypotenuse macro. The
idea here is that hypotenuse should expect two arguments on the stack, and it should pop them off, leaving the
hypotenuse of the corresponding right triangle pushed on the stack. To handle this, we introduce a couple of new
primitives to Calc:

kSwap :: Calculation
kSwap = do

y <- pop
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x <- pop
push y
push x

kDup :: Calculation
kDup = do

x <- pop
push x
push x

together with the corresponding updates to Calc’s export list. At this point, purists might note that while the HP-35
had a swap key, it didn’t have a dup key. That’s because the Enter key did the work of both kEnter and kDup,
depending on the input state, i.e., it had the effect of kEnter if we’d just typed a number in, and kDup if the last
key-stroke was an operation or an Enter.

We’re also going to need a square root function. To facilitate this, we’ll add a private unOp function:

unOp :: (Double -> Double) -> CalcState ()
unOp op = do

x &lt- pop
push $ op x

and the keystroke function for square root:

kSqrt :: Calculation
kSqrt = unOp sqrt

We’ll also take this opportunity to add the basic trigonometric functions,

kSin,kCos,kTan :: Calculation
kSin = unOp sin
kCos = unOp cos
kTan = unOp tan

This enables us to define (in the CalcExample module in CalcExample.hs)

square :: Calculation
square = do

kDup
kMul

hypotenuse :: Calculation
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hypotenuse = do
square
kSwap
square
kAdd
kSqrt

With this in hand, we can compute the hypotenuse of a 3-4-? triangle:

> perform $ kEnter 3 >> kEnter 4 >> hypotenuse
5.0

This is all pretty straightforward, if a bit nerdy, and in Professor Kurtz’s case, maybe even a bit maudlin. That
HP-35 died decades ago, but oddly enough I still have the slide rule it replaced. There’s probably a lesson in that.
Life, and computing, go on.

But let’s push this a bit further. HP calculators, in addition to the stack, also contained a memory location as a
part of their state. Let’s suppose we wanted to implement the store and recall functionality. This presents us with a
conundrum. How? The answer is going to take us back to Calc, and a more complicated model of the state that’s
being manipulated:

data InternalState = InternalState
{ stack :: [Double]
, memory :: Double
}

type CalcState = State InternalState

This is obviously going to break things, but because of the abstraction barriers we’ve implemented, the breakage is
limited to the Calcmodule, and indeed, because of an internal abstraction barrier within Calc to just the push, pop
and perform functions, as they’re the only functions that accessed the state directly:

pop :: CalcState Double
pop = state $ \st -> case stack st of
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[] -> (0.0,st)
(x:xs) -> (x,st {stack = xs})

push :: Double -> CalcState ()
push d = modify $ \st -> st { stack = d : stack st }

perform :: Calculation -> Double
perform ma = evalState (ma >> pop) startState where

startState = InternalState { stack = [], memory = 0.0 }

With this, our existing code works, leaving us only to implement access to the memory part of the internal state.

Exercise 20.6 Add implementations of store and recall to the Calc module, along with exported definitions. The
store action should copy the top of the stack into memory, while the recall action should push the memory onto the top
of the stack.

kSto :: Calculation
kSto = store

kRcl :: Calculation
kRcl = recall

and write an example program that illustrates their use.

Use the modules:

• State.hs

• Calc.hs

• CalcExample.hs

20.2 State, II

HTML

Our next example is a good deal more practical. We’re going to use the State monad to write a small library for
producing HTML. Note that we’re moving to the “official” MTL implementation:

import Control.Monad.State

type Document = State String
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The idea here is that our state is going to be a String that contains HTML, and our various operations are going
to act on it. In the simplest case, we’ll simply append some a String onto the state:

string :: String -> Document ()
string t = modify (\s -> s ++ t)

Which, after the usual transformations, we can write as

string = modify . flip (++)

Next, we need a bit of code (analogous to perform in the calculator example) to render an HTML value as a string:

render :: Document a -> String
render doc = execState doc ""

Note that this code is already borderline useful:

> render (string "foo" >> string "bar")
"foobar"

Thus, we can do simple string concatenation, with an alternative notion.

But the heart of HTML is its use of tags. We’ll define tag to be a monadic function, which takes a tag name and a
monadic argument, and writes a start tag, then performs the action of the argument monad (appending its output to
the state), and then concludes by writing the end tag.

type HTML = Document ()

tag :: String -> HTML -> HTML
tag t html = do

string $ '<' ++ t ++ '>'
html
string $ '</'++ t ++ '>'

We can then define a number of tagging functions:

html = tag "html"
head = tag "head"
title = tag "title"
body = tag "body"
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p = tag "p"
i = tag "i"
b = tag "b"
h1 = tag "h1"
h2 = tag "h2"
h3 = tag "h3"
h4 = tag "h4"
ol = tag "ol"
ul = tag "ul"
table = tag "table"
tr = tag "tr"
th = tag "th"
td = tag "td"

These functions can be used to give a nice structural definition of an HTML page in Haskell, e.g.,

doc :: HTML
doc =

html $ do
head $ do

title $ string "Hello, world!"
body $ do

h1 $ string "Greetings"
p $ string "Hello, world!"

We can render this, and write it as a file:

> writeFile "hello.html" $ render doc
>

This is all pretty enough, but how is it useful?

Let’s consider a fairly typical minor problem in dealing with a web server: determining exactly what environmental
variables are set. What we’re going to do is write a little CGI (common gateway interface) program, which obtains
the environmental bindings, and converts them to HTML. There is surprisingly little code required:

{- A program for rendering a CGI's environment as HTML -}

module Main where

import HTML
import Data.List (sort)
import System.Posix.Env
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{- Create an HTML document based on a key/value list -}

makeDoc :: [(String,String)] -> HTML
makeDoc env =

html $ do
HTML.head . title . string $ 'Environment variables'
body $ do

h1 . string $ 'Environment variables:'
ul . mapM_ makeEntry . sort $ env

where

makeEntry (key,value) = li . string $ key ++ ' = ' ++ encode value

encode = concatMap encodeChar where
encodeChar '<' = '<'
encodeChar '&' = '&amp;'
encodeChar '>' = '>'
encodeChar c = [c]

{- The main act -}

main :: IO ()
main = do

env <- getEnvironment
putStr "Content-type: text/html\n\n" {- the minimal required HTTP header -}
putStr . render . makeDoc $ env

The heavy lifting here is done by the call to mapM_, which turns a list of binding pairs into an HTML value that
sequences an appropriately formatted li element for each binding pair.

Most people don’t write CGI programs in Haskell, I’m not most people, so I sometimes do, albeit usually using
the functionality found in Text.Blaze and Network.cgi, but this small example shows how we can roll our own
functionality.

Exercise 20.7 When generating output in formats such as HTML, it is often desirable to pretty print the results, especially
while debugging. The idea is to make judicious use of indentation, newlines, and other formatting choices to make the file
more readable. In this problem, you will write a pretty-printing version of the HTML generator above. For example:

> :load PrettyHTML.hs
> putStr $ render doc

<html>
<head>
<title>Hello, world!</title>

</head>
<body>
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<h1>Greetings</h1>
<p>Hello, world!</p>

</body>
</html>

To implement this functionality, start with the new state representation

type Document = State (Int, String)
type HTML = Document ()

where the integer value represents the ”depth” of the current tag in the HTML tree. When generating string output at depth
k, the string should typically be indented k ”tabs” to the right. One tab should be four spaces.

The file PrettyHTML.hs provides a template for your solution, where undefined is used as a placeholder for the following
definitions that you must complete:

string :: String -> Document ()
newline :: Document ()
render :: Document a -> String
indent :: Document ()
exdent :: Document ()

The newline function should append an indentation-aware newline (i.e., a newline followed by an appropriate number
of tabs) to the current string state. The indent and exdent functions are used to increment (respectively decrement) the
indentation level by one.

Randomness

There is an important class of computer programs that use randomness (or more properly, as we’ll see, pseudo-
randomness), often to generate a ”typical instance” based on a probabilistic model of some type. Our next program
will do just that, through a re-implementation of Emacs’s ludic “disassociated-press” command.

The idea behind disassociated-press is simple: The input is used to create a model of English prose, based on the
frequency with which one word follows another, and then a random instance of that model is created. The result
is best described as “English-like,” often non-sensical, but sometimes disconcertingly sensical. It will be noted in
passing that we had fewer sources of entertainment back in the day.

Our model is as follows:

type Model = (String,Map String [Maybe String])

A Map is simply a higher efficiency version of an association list.
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Our model keeps track of the first word (which is used to kick-off generation), and a map which associates with
each word of the text a list of following words. Now, this later is not exactly right, as we’re going to use the map
to deal with both word succession and termination – so the values are [Maybe String], where a Just w element
represents a succeeding word w, and Nothing represents the end of the text.

Building the model is something we do in pure code.

buildModel :: [String] -> Model
buildModel xs@(x:_) = (x,unionsWith (++) . transitions $ xs) where

transitions (y:ys@(y':_)) = singleton y [Just y'] : transitions ys
transitions [y] = [singleton y [Nothing]]
transitions [] = error "Impossible error"

buildModel [] = error "Empty model"

The Map data type has a lot of existing functionality, including functionality for mutation, but it is generally more
convenient to build maps out of simpler maps, as we’ve done here, providing an appropriate combining function.

Randomness enters into the program in generating an example text from the model. The central problem for us is
to select a random element from a list, and herein enters the central problem of writing pure functional code that
uses randomness. Most programming languages provide a function

rangen :: () -> Int

The idea here is that each call to rangen () will produce a new, random result. But pure languages don’t work that
way: functions alway produce equal results on equal arguments. Haskell deals with this by defining

class RandomGen g where
next :: g -> (Int, g)
...

which should look like a familiar state transition function, because that’s what it is.

The idea here is that a random number generator will produce both a random integer, and a new random number
generator. Code that uses randomness then chains these random number generators through the various calls, and
this can be a pain to keep straight. So we use the State monad to ”hide” the random number generators.

import System.Random

type RandState = State StdGen

We can now write
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roll :: Int -> RandState Int
roll n = state $ uniformR (1,n)

Which rolls an n sided dice, and

select :: [a] -> RandState a
select as = do

i <- roll . length $ as
pure $ as !! (i-1)

Which we can express more succinctly as

select as = (as !!) . (subtract 1) <$> roll (length as)

The function randomR (a,b) will produce a random element in the range from a to b inclusive, which we’ll use as
an index into the list. Note that randomR:: RandomGen g => (a, a) -> g -> (a, g), so we’re going to use
the state function to lift a pure function of type RandomGen g => g -> (a,g) into RandState as before.

This brings us to the actual generation of the list of words from the model. This starts with the first word, and we
use each successive word to look up possible continuations.

runModel :: Model -> RandState [String]
runModel (start,wordmap) = iter start where

iter word = do
let successors = wordmap ! word
succ <- select successors
case succ of

Just w -> do
ws <- iter w
pure (word:ws)

Nothing -> pure [word]

Exercise 20.8 Show how the code for runModel can be tightened up to the following:

runModel :: Model -> RandState [String]
runModel (start,wordmap) = iter start where

iter word = (word:) <$> do
maybeNext <- select $ wordmap ! word
case maybeNext of

Just nextWord -> iter nextWord
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Nothing -> pure []

Of course, a list of words doesn’t lend itself to nice output, so we’ll write a little line-breaking function:

linefill :: Int -> [String] -> String
linefill _ [] = '\n'
linefill n (x:xs) = iter x xs where

iter current (nextWord:ys)
| length current + length nextWord + 1 > n = current ++ '\n' ++ linefill n (nextWord:ys)
| otherwise = iter (current ++ ' ' ++ nextWord) ys

iter current [] = current ++ '\n'

This leaves us with main:

main :: IO ()
main = do

input <- getContents
gen <- getStdGen
let model = buildModel (words input)

disassociatedPress = evalState (runModel model) gen
putStr . linefill 72 $ disassociatedPress

All that remains is a good chunk of prose to test this on. We’ll consider the Gettysburg address, and produce the
following Gettysburg address-like word salad:

$ ./disassociated-press < gettysburg.txt
Four score and proper that nation might live. It is for us to the last
full measure of that we can not dedicate, we can never forget what we
can not consecrate, we can never forget what we can never forget what we
can long endure. We are created equal. Now we can not hallow this
ground. The world will little note, nor long remember what they who here
gave the unfinished work which they gave their lives that government of
that these honored dead we here to the unfinished work which they who
fought here gave the last full measure of that field, as a portion of
that war. We have thus far so nobly advanced. It is altogether fitting
and dead, who here have a final resting place for which they did here.
It is rather for the people, by the proposition that government of that
government of freedom—and that field, as a new birth of that we can long
remember what we can not perish from these honored dead we can not
hallow this continent a great task remaining before us—that from these
honored dead shall not have died in vain—that this continent a final
resting place for which they did here. It is for which they gave the
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earth.

Exercise 20.9 A problem with simple probabilistic text generators like the one above is that they can generate very large
amounts of text. How great is the danger in this case? Rework the program to run themodel 1,000 times (without printing!),
and compute the lengths of the largest and smallest strings generated. (To be clear here, we’re measuring length in characters,
not words.) Hint: replicateM is really useful at running a monad a bunch of times.

Use the module disassociated-press.hs, and gettysburg.txt.

[Note for 2019] As originally written, this problem could have been interpreted as generating the longest and shortest strings,
and printing them, rather than their lengths. This is acceptable for 2019, but not after.
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Chapter 21

Case Study: Functional Parsing

21.1 Introduction to Functional Parsing

A parser is a function/procedure that translates a String representing a value of type a into that value. It’s tempting
to propose the following as the definition of an abstract Parser type:

type Parser s = String -> s

The problem here is that if we’re building a parser out of pieces, the pieces are going to be sub-parsers that consume
part but not all of the input. This suggests the following:

type Parser s = String -> (s,String)

where we’re returning a pair that consists of the result of parsing an initial segment of the input string, and the
unparsed remainder. This may be reminiscent of the State monad, specialized to String. Such a definition would
allow us to write code like this:

pairp :: Parser a -> Parser b -> Parser (a,b)
pairp ap bp s = ((a,b),u) where

(a,t) = ap s
(b,u) = bp t

or even, if we somehow monadify Parser along the lines of State,

pairp :: Parser a -> Parser b -> Parser (a,b)
pairp ap bp = do

a <- ap
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b <- bp
pure (a,b)

or, after putting our applicative thinking hats on, even

pairp = liftA2 (,)

both of which hint at things to come. Unfortunately, though, this definition of Parser isn’t quite robust enough.
Consider, e.g., the special case of trying to parse a simple arithmetic expression. Suppose we had

data Expression
= Const Double
| Add Expression Expression
| Mul Expression Expression

expressionParse :: Parser Expression

What should expressionParse "1+2*3" return? Obviously, we’re looking for the result

• (Add (Const 1) (Mul (Const 2) (Const 3)), "")

But what about

• (Const 1,"+2*3"), or

• (Add (Const 1) (Const 2), "*3")?

All are plausible, in that they meet the contract for expressionParse, even though the last one is a bit problematic.
We don’t just have one right answer, it seems we have three! It’s useful to think this as a non-deterministic calculation.
So let’s return a list:

type Parser s = String -> [(s,String)]

Of course, we’re going to want to make Parser an instance of various standard type classes, so we’ll use newtype
as before:

newtype Parser s = Parser { runParser :: String -> [(s,String)] }

The result looks like a mash-up of a State and a []. This is an interesting and productive observation.

Following Joroen Fokker, who first wrote this sort of functional parser, we now build some simple parsers, e.g.,
satisfy “shifts” the first character of input if it satisfies the argument predicate:
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satisfy :: (Char -> Bool) -> Parser Char
satisfy p = Parser $ \s -> case s of

[] -> []
a:as

| p a -> [(a,as)]
| otherwise -> []

Note here the spiffy use of guards within patterns within a case statement. There’s a really cute way to clean up that
the last little bit, which is called the Fokker trick:

satisfy :: (Char -> Bool) -> Parser Char
satisfy p = Parser $ \s -> case s of

[] -> []
a:as -> [(a,as) | p a]

How does this work? If p a is false, we end up returning the [] type’s empty which is just [], so [(a,as) p a]| is
either [(a,as)] or [], according to whether p a is True or False, respectively. It’s a cute trick, and well worth
remembering.

We can use satisfy to define a number of additional simple parsers

char :: Char -> Parser Char
char c = satisfy (c==)

alpha, digit, space :: Parser Char
alpha = satisfy isAlpha
digit = satisfy isDigit
space = satisfy isSpace

Exercise 21.1 Show by a series of principled transformations that we can define:

char :: Char -> Parser Char
char = satisfy . (==)

The character predicates from Data.Char all beg to be turned into simple parsers, in similar fashion.

Next, we have a simple parser that recognizes a string:

string :: String -> Parser String
string str = Parser $ \s -> [(t,u) | let (t,u) = splitAt (length str) s, str == t]
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Here, again, we use the Fokker trick, creating either a zero- or one-element list. A remarkable fact is that this pretty
much concludes our effort to build primitive parsers, further progress is going to take the form of adding Parser to
various standard type classes, leveraging the power of these simple functions.

We’ll start by considering the task of writing a Parser Bool. We can start by considering a couple of primitive
parsers for recognizing the strings "True" and "False".

parseTrue = string "True"
parseFalse = string "False"

An obvious first problem is that these parsers both have type Parser String, rather than Parser Bool. To get a
Parser Bool, it’s convenient to make Parser an instance of Functor.

instance Functor Parser where
fmap f p = Parser $ \s ->

[(f a,t) | (a,t) <- runParser p s]

With the Functor instance in hand, we can write:

parseTrue = (const True) <$> (string "True")
parseFalse = (const False) <$> (string "False")

This sort of thing (a combination of const and (<$>)) happens a lot, so unsurprisingly there’s an operator (<$) :: Functor f => a -> f b -> f a
in Data.Functor that does this.

and perhaps recognize a useful pattern here:

token :: String -> a -> Parser a
token s a = a <$ string s

parseTrue, parseFalse :: Parser Bool
parseTrue = token "True" True
parseFalse = token "False" False

With this,

> runParser parseTrue "True"
[(True,"")]

which isn’t exactly what we want, but it’s a solid step in the right direction.

Of course, we don’t want to be able to parse "True" or parse "False", we want to be able to parse a string that
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contains either. Somehow, we want to combine the two parsers into one parser, merging their outputs. There are
a number of ways to approach this. We could make Parser s an instance of Monoid, or we could make Parser
an instance of Alternative. Indeed, we could do both. There is an apparent cost associated with making Parser
an instance of Alternative, and that is that Alternative requires Applicative. But a moment’s consideration
should suggest that we’re going to want to combine the outputs of multiple parsers, as hinted at with the pairp
example, and we know that the easiest way to provide generalizations of fmap to functions of greater arity is through
Applicative anyway. So...

instance Applicative Parser where
pure a = Parser $ \s -> [(a,s)]
af <*> aa = Parser $ \s ->

[ (f a,u)
| (f,t) <- runParser af s
, (a,u) <- runParser aa t
]

instance Alternative Parser where
empty = Parser $ \s -> []
p1 <|> p2 = Parser $ \s ->

runParser p1 s ++ runParser p2 s

With this in hand, not only does our pairp example work, we can finish the Parser Bool:

parseBool :: Parser Bool
parseBool = token "True" True <|> token "False" False

An alternative solution, well worth remembering in other contexts, is

parseBool = read <$> (string 'True' <|> string 'False')

At this point, it’s standard practice to introduce parser combinators many and some, which given a Parser a return
a Parser [a], where the many version returns a list of zero or more successful parses, and some a list of one or
more parses. It’s natural to write these via mutual recursion, as

many, some :: Parser a -> Parser [a]
many p = some p <|> pure []
some p = liftA2 (:) p (many p)

Much to our surprise, attempting to do so results in an error: many and some are already defined in Control.Applicative,
with the type signature
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many, some :: Alternative f => f a -> f [a]

Moreover, a quick consideration of our implementation reveals that it only uses functions in the Alternative or
Applicative type classes. Unsurprisingly, we’ve just reimplemented these standard functions! Likewise, it’s often
useful to have an optional parser combinator, which is used for elements that may be present, but it too is already
available in Control.Applicative, simplifying our work considerably.

For example:

> runParser (many parseBool) "TrueTrue!"
[([True,True],"!"),([True],"True!"),([],"TrueTrue!")]
> runParser (some parseBool) "TrueTrue!"
[([True,True],"!"),([True],"True!")]
> runParser (optional parseBool) "TrueTrue!"
[(Just True,"True!"),(Nothing,"TrueTrue!")]

We can now consider a mildly non-trivial parsing problem. Consider the type

data IntV = IntV Int deriving (Show)

This is just an Int in a box. Can we parse this given its natural syntax?

parseInt = read <$> some digit
skipSpaces = const () <$> many space

parseIntV = liftA3 (\_ _ i -> IntV i) (string "IntV") skipSpaces parseInt

For example:

> runParser parseIntV "123!"
[]
> runParser parseIntV "IntV 123!"
[(IntV 123,"!"),(IntV 12,"3!"),(IntV 1,"23!")]

A nice consequence of writing parseIntV is that it enables us to add IntV to the Read class, via

instance Read IntV where
readsPrec _ = runParser parseIntV
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Which we can test with

> read "IntV 18" :: IntV
IntV 18

Sweet! Of course, we could have also achieved the ability to read IntV values like this by including Read in the
deriving clause of the type definition, but explicitly defining the Read IntV instance allows us to choose a different
syntax if desired. Note that the wildcard argument to readsPrec is a precedence level, which means that we can
have different parsers associated with different parsing contexts.

There’s a small gap here, in that the parsers we’re building return multiple results, whereas read returns only a
single result. The bridge is in terms of code that filters the result list for those pairs (a,t) where the unparsed string
t consists only of whitespace, and then requires that there be only a single result of that form, e.g.,

parseWith :: Parser a -> String -> a
parseWith p s = case [a | (a,t) <- runParser p s, all isSpace t] of

[a] -> a
[] -> error "no parse"
_ -> error "ambiguous parse"

It’s reasonable to argue that this might have been better handled by returning a value of type Either String a
than by throwing an exception via error. When you write your own language, be sure to do it that way.

Monadic Parsing

Historically, functional programmers approached parser combinators through Monad rather than through Applicative
and friends. It’s worth noting that we can make Parser into a monad, and this has the considerable advantage of
making monadic do-notation available to us, although pending changes to GHC/Hackage will permit the use of
restricted versions of do with Applicative, largely eliminating this advantage.

instance Monad Parser where
p >>= g = Parser $ \s ->

[ (b,u)
| (a,t) <- runParser p s
, (b,u) <- runParser (g a) t
]

instance MonadPlus Parser

With these definitions, we could have written

parseIntV :: Parser IntV
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parseIntV = do
string 'IntV'
skipSpaces
i <- parseInt
pure $ IntV i

which has the advantage of conceptual simplicity. That said, contemporary practice favors using Applicative based
constructors over Monad based constructors, and the results argue for themselves in terms of concision if not always
clarity.

Exercise 21.2 Consider the following type declaration:

data ComplexInt = ComplexInt Int Int
deriving (Show)

Use Parser to implement Read ComplexInt, where you can accept either the simple integer syntax "12" for ComplexInt 12 0
or "(1,2)" for ComplexInt 1 2, and illustrate that read works as expected (when its return type is specialized appro-
priately) on these examples. Don’t worry (yet!) about the possibility of minus signs in the specification of natural numbers.

This is cool stuff, and we can and will take this style of parsing very far. This isn’t our father’s Fortran, nor indeed
our high school Java or Scheme.

With all of this work behind us, the end product is remarkably concise and powerful parser combinator library that
requires less than a full page of code. Just to be clear here: we haven’t written a parser in less than a full page of code,
we’ve written a module for writing parsers in less than a full page of code. And we’re not done yet.

• Parser.hs, as above.

Ἀπὸ μηχανῆς θεός

Remember back when we remarked that original definition of Parser looked like a mashup of a State monad and
a [] monad? We can breathe life into this observation by noting that Control.Monad.State ultimately defines
State in terms of the monad transformer StateT. Looking at the definition of StateT, we have

newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }

So, if we define

type Parser = StateT String []
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we at least get the type right. But here’s where the wild magic begins: if we look at the instances provided by StateT,
we’ll see:

Functor m => Functor (StateT s m)
(Functor m, Monad m) => Applicative (StateT s m)
(Functor m, MonadPlus m) => Alternative (StateT s m)
Monad m => Monad (StateT s m)
MonadPlus m => MonadPlus (StateT s m)

In the current context, m is [], and we know that [] is a Functor, a Monad, and a MonadPlus, and as such,
our Parser type will be an instance of Functor, Applicative, Alternative, Monad, and MonadPlus for free!
Moreover, once we have these instances, we can use combinators for these type classes to simplify our base definitions,
e.g.,

string :: String -> Parser String
string = mapM char

Pulling this all together, we have

• ParserFinal.hs, via Monad Transformers, in 22 lines.

Not a parser, but a powerful module for writing parsers . Try that in C++ or Java.

The sudden appearance of monad transformers here very much has the flavor of a deus ex machina, and you’re all
very much to be forgiven if you’re not only saying to yourself, “I didn’t see that coming,” but “Is he really expecting
that I’m going to be able to pull this kind of wild rabbit out of my hat?” No. Or at least, not yet. In truth, I gave
a predecessor version of this lecture for three consecutive years without invoking this wild magic, only realizing
in the summer before the fourth year that not only could the previously mysterious monad transformers be used
here, but they resulted in a Parser class that was both more concise and more powerful. It was a programmer’s
epiphany—to paraphrase the great Hungarian combinatorialist Paul Erdös, I felt as if I’d been granted a peak at a
page of code from God’s own git repository.

But that said, you’re unlikely to find what you’re not looking for. We’ll do some more examples that use monad
transformers later in the quarter, and will even take a quick peek at some of the wild magic that the Monad Trans-
former Library (mlt) uses to simplify both the coding and the use of monad transformers.

Historical Note

The use of parser combinators to build backtracking parsers has a long history in functional programming. A
particularly formative (and illustrative) article is Functional Parsers (PDF) by Joroen Fokker. Note that Fokker’s
code isn’t actually Haskell—it’s Gofer, a predecessor language. You shouldn’t have any trouble with translation.
Another good source for this material is Chapter 13 of Hutton (2nd edition).
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21.2 Practical Functional Parsing

Text.ParserCombinators.ReadP

Having gone to all of the trouble of writing our own parser combinator library, we’ll now set it aside and use a similar
butmuchmore developed and efficient combinator library that comes with theHaskell Platform: Text.ParserCombinators.ReadP.
Note that there are several other parser libraries for Haskell, and that ReadP isn’t necessarily the most popular, it’s
just the best pedagogical fit for us right now.

First, the good news. May familiar parser combinators from Parser are available to us in ReadP, notably, satisfy,
char, and string, as well as many other conveniences. ReadP also belongs to all of the type classes that you’d expect:
Functor, Applicative, Alternative, Monad, MonadFail, and MonadPlus.

The bad news is that when ReadP was written, functional parsing was usually referred to as monadic parsing, and
many of the other type classes hadn’t yet been formalized. So there is an occasional awkwardness, in that ReadP in
some ways anticipated Applicative, Alternative and other type classes that didn’t exist when it was written, and
so in some ways is duplicative of them. In particular, ReadP defines many with the same meaning as Applicative’s
many, but conflicting with it; and many1 which is synonymous with Applicative’s some. ReadP defines (+++)
which is synonymous with <>|, while pfail is synonymous with empty.

A mildly annoying difference is that the “run” function is readP_to_S rather than runParser. If it’s sufficiently
annoying, just define runParser = readP_to_S, otherwise live with it. We’ll live with it.

ReadP was written with a concern for efficiency, and this leads us to consider a couple of new parser combinators.

(<++) :: ReadP a -> ReadP a -> ReadP a

is described as a left-biased alternative. The idea is that pa <++ pb is a parser that tries pa first. If it returns any
results, those are the results, but if it fails, it next tries pb. We can imagine that (<++) is defined as

ap <++ bp = Parser $ \s ->
case runParser ap s of

[] -> runParser ab s
rs -> rs

although the actual definition is quite different, as the underlying representations are more complex. Next, we have:

munch :: (Char -> Bool) -> ReadP String

This function returns the largest substring of the string to be parsed that satisfy the predicate. This is subtly different
from many (satisfy p), cf.

> readP_to_S (munch (=='a')) "aaabb"
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[("aaa","bb")]
> readP_to_S (many $ satisfy (=='a')) "aaabb"
[("","aaabb"),("a","aabb"),("aa","abb"),("aaa","bb")]

This often doesn’t make any difference at all (as only the longest version can be valid), but there can be a quadratic
savings in not generating the shorter forms.

Note that there’s a variant munch1 of munch which succeeds only if there is at least one character in the result.

Becoming an Expert

The module Text.ParserCombinators.ReadP contains many functions beyond those that we implemented in our
Parsermodule. A good strategy for building expertise in Haskell is to read through the documentation for modules
like Text.ParserCombinators.ReadP, and try to implement the various functions it contains. Then, follow the
links to the source code, and see how Haskell experts have implemented them. This will give you practice, the
opportunity to read and learn from experts, and also a close acquaintance with the facilities the module provides.

Example: Duplication With Variation

It’s easy to duplicate a file, that’s what the Unix cp utility is for. But what if we want to produce a bunch of near-
duplicates of a given text, i.e., we want those duplicates to vary somehow? If the variations are sufficiently simple,
we can write a program that generates all of the variations, and produces the duplicated text. But often, we’ll have
some sort of database, and the variations will amount to the rows of one of the relations of that database. In this
case, we’ll want to be able to handle a file that contains our data, and CSV (comma separated values) with headers is
a natural choice.

If we’re only interested in duplicating a particular fixed base text, we incorporate that text into the logic of the
program we’re writing. But this is the sort of job where the text to be duplicated tends to vary over time too, and
this leads to a preference to “move it out of the code.” So we’ll create a simple text format to describe the underlying
text.

As an aside, the code we’re studying is a simplified version of the spam program that Professor Kurtz has used to
send out wait-list notifications and similar bulk emailings.

DupV.Template

Our templates will consist of ordinary text files, in which set-braces are used to indicate a placeholder to be filled in
from our data file. For example, one of the test files for this program contains:

The Arabic numeral {arabic} and the Roman numeral {roman} both represent {english}.

The idea here is that {arabic}, {roman}, and {english} will all be filled in with data from our CSV file.
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Our internal representation of a Template will be:

data Template = Template { items :: [TemplateItem] }

data TemplateItem
= Literal String
| Variable String

Our first programming task is to parse the input file, e.g., obtaining

Template {items =
[ Literal "The Arabic numeral "
, Variable "arabic"
, Literal " and the Roman numeral "
, Variable "roman"
, Literal " both represent "
, Variable "english"
, Literal ".\n"
]}

We’ll use ReadP:

parseTemplate :: ReadP Template
parseTemplate = Template <$> many parseTemplateItem where

parseTemplateItem = parseLiteral <++ parseVariable
parseVariable = Variable <$>

(char '{' *> munch1 isAlphaNum <* char '}')
parseLiteral = Literal <$> munch1 (`notElem` '{}')

This requires a bit of explanation. We use many to parse a list of items. The items to be parsed are TemplateItems,
which come in one of two forms. We write sub-parser for each, using (<++) to avoid a parse that must fail if the
preceding parse succeeded. There’s some subtly in both subparsers.

Our use of munch1 in parseLiteral is important! If we just used munch, the parser would succeed in producing a
Literal "" without reading any input, and in the context of many would result in infinitely many Literal ""’s
at the end of the string (as well as at each transition to a variable). Pragmatists will note that parsers should always
consume some input, otherwise bad things can happen!

Our definition of parseVariable uses two new applicative operators, <* and *>. These are sequencing operators,
which return the value of the first, or second, argument respectively. Note that the relational operator “points
towards” the applicative value we will keep. In the old days, we’d have written parseVariable in a monadic style,
which is superficially quite different, but essentially the same:

parseVariable = Variable $ do
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char '"'
result <- munch1 isAlphaNum
char '"'
pure result

It is perfectly reasonable to write parsers this way when you’re trying to figure things out, but it’s useful to keep in
mind that if a bound variable never appears on the right-side of a binding, it should be possible to rewrite the code
applicatively. With practice, the applicative forms come first.

We can use the ReadP parser to make Template an instance of the Read type class,

instance Read Template where
readsPrec _ = readP_to_S parseTemplate

and then introduce the convenience function

loadTemplateFile :: FilePath -> IO Template
loadTemplateFile path = read <$> readFile path

Finally, we have a simple bit of code for instantiating a template, given a list of keys and a list of values:

instantiate :: Template -> [String] -> [String] -> String
instantiate template header record =

let dict = Map.fromList $ zip header record
fill (Literal s) = s
fill (Variable v) = dict ! v

in concat . map fill . items $ template

This is simple, yet powerful code. We build a Map, an efficient structure for manipulating key-value pairs, out of an
association list built out of the keys and values. We define a fill :: TemplateItem -> String that “evaluates”
a TemplateItem in the context of the Map we just built. Finally, we map the fill function across the items of the
template, obtaining a [] of String, which we flatten using concat.

DupV.SimpleCSV

The CSV format is deceptively simple, and parsing any individual CSV file is usually straightforward. A CSV file
consists of a sequence of newline terminated records, where each record is a sequence of comma separated fields, and
each field is just a String. So, what’s hard? CSV began life as an informal format. There is an Internet Engineering
Task Force (IETF) Received for Comment (RFC, a.k.a., and internet standards document) RFC 4180 that describes
CSV, but that “standard” is based on reverse engineering files that claimed to be CSV, so the cart of practice came
before the horse of specification. And my experience of CSV includes files that don’t meet the “standard” of RFC
4180, a very real caveat for anyone who emptor’s it. So writing a good, general CSV parser has real challenges.
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We’ll start by writing a simplified ReadP parser, and then deal with some of the complexities of CSV.

newtype CSV = CSV { content :: [[String]] }

instance Read CSV where
readsPrec _ = readP_to_S parseSimpleCSV

parseSimpleCSV :: ReadP CSV
parseSimpleCSV = CSV <$> record `endBy` newline <* eof where

newline = string "\n"
record = field `sepBy` char ','
field = munch (`notElem` ",\n")

There’s a bit of complexity here.

As before, we’re going to take advantage of the Read type class, and so introduce use newtype to wrap the type
we’re interested in. But read can ignore white space at the end of its input, and in the case of CSV parsing, this can
result in an ambiguity, so we use the eof parser from ReadP to ensure that the entire input string is read.

The endBy parser combinator builds lists of values from a parser for the values and their terminators. There is a
similar sepBy parser combinator for building lists of values from a parser for the values and a parser for the separators.
The expression record `endBy` newline is a parser for a list of records, each of which must be terminated by a
newline, while field `sepBy` char ',' is a parser for a list of fields separated by commas.

This would be good enough, if

• we were only going to run this code on Unix-like systems, and

• we never needed a comma or a newline within a field value.

Unfortunately, these are not assumptions we want to make. So there’s a bit of work to do.

Newlines

Operating systems don’t agree as to what precise sequence of characters constitutes a newline. Unix uses a bare
linefeed (LF) "\n", a.k.a. ASCII 012 (that’s an octal codepoint). MacOS Classic used a bare carriage return (CR)
"\r", a.k.a., ASCII 015. MacOS X follows the Unix convention as befits its Unix foundations. Finally, Windows
follows a convention that is as old as teletype machines, and relies on a CRLF pair, "\r\n". And CSV is such a
basic file format that it could have come from anywhere, and may have passed through many hands, so we can’t
even be entirely confident that the same newline convention will be used consistently within a single file, although
we expect that exceptions to this will be rare.

We’ll take a pragmatic point of view. We may have to deal with Windows, Linux, and MacOS X, but we’re not
going to have to deal with MacOS Classic. So we can define
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newline = string "\n" <++ string "\r\n"

Yes, this is biased towards Unix. I like it that way.

Commas

To deal with the issue of commas and newlines within fields, CSV has the notion of a quoted field: this is a field that
begins and ends with a '"', and can contain anything but a '"' within it. To avoid any ambiguity, CSV forbids
simple (non-quoted) fields from containing a '"'. Thus

field = quotedField <++ simpleField
simpleField = munch (`notElem` ",\n\"")
quotedField = char '"' *> munch (/='"') <* char '"'

Of course, this just trades one problem for another. We can now have commas in our fields, but we can’t have
double-quotes. To deal with this, CSV further allows a quoted double-quote within a quoted field. How do you
quote a double-quote? In CSV, you repeat it. Thus, e.g.,

"He said, ""Foo!"""

To accommodate this, we’ll replace the munch (/='"') within the definition of quotedField as follows:

quotedField = char '"' *> many quoteChar <* char '"'
quoteChar = satisfy (/= '"') <++ (string "\"\"" $> '"')

Note the useful $> operator from Data.Functor. The expression (string "\"\"" $> '"') means that if we
successfully parse a repeated double-quote, the value we should return is a single double-quote.

Exercise 21.3 The use of many in the definition of quotedField introduces the very problem that munch was written to
solve. The problem is that we can’t use munch, as it has the wrong type (it acts on a character predicate, rather than general
parser). Write the function

greedy :: ReadP a -> ReadP [a]

which greedily parses a sequence of values, returning only maximal sequences. Note that ”maximal” in this context does
not mean that list has the greatest possible length, nor that it ingests the maximum number of input characters, but rather
that it cannot be extended. E.g.,
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> readP_to_S (greedy (string "a" +++ string "ab")) "abaac"
[(["a"],"baac"),(["ab","a","a"],"c")]

Hint: the (<++) parser combinator is very helpful!

Main

Our main is

main :: IO ()
main = do

args <- getArgs
case args of

[variationFile,templateFile] -> do
template <- loadTemplateFile templateFile
header:variations <- content <$> loadSimpleCSV variationFile
putStr . concat . (`map` variations) $ \variation ->

instantiate template header variation
_ -> do

hPutStrLn stderr 'Usage: spam variationFile templateFile'
exitFailure

This is mostly straightforward.

Real Programming

There is a good overview of this process on the HaskellWiki at haskell.org, How to write a Haskell program.
The name notwithstanding, this wiki page describes how to package and distribute a Haskell program or library.

I recommend using git for version control, cabal for builds, and haddock for documentation.

Real programs often try to move as much of their data into data files as possible (we’ve done this), and as much of
their internal logic into modules organized around basic data structures an the algorithms that support them. This
simplifies code reuse.

Real programs also require a means of distribution. For this particular program, the sources are on GitHub: stuar-
tkurtz/DupV, and the program can easily be downloaded and installed from there.

Exercise 21.4 One way this program can be made much more useful is to add a number of pre-defined variables, e.g., the
time and date of processing. Modify the dupv program to include such a feature.
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Part III

Towards the Real World
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Chapter 22

Monad Transformers

22.1 Maybe Monad Transformer is Not So Scary

(Chapter contributed by RC)

[RC: See https://www.classes.cs.uchicago.edu/archive/2023/winter/22300-1/notes/maybe-monad-transformer/]
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22.2 StateT Example: Sudoku

[RC: See http://cmsc-16100.cs.uchicago.edu/2021-autumn/Lectures/26/sudoku.php]
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22.3 MTL: Implementation

Today I’d like to review the monad transformer library (mtl) with an eye to its overall construction.1 There is some
very clever engineering here, and you can learn a lot from the careful study of the work of masters. But there is
another reason. Some of the cleverness leaks out, in that the documentation of the unadorned State monad and
similar monads can be confusing to the uninitiated. For starters, if you look where you expect in the documentation
to be in Control.Monad.State, you get pointed to Control.Monad.State.Lazy, but it starts out by talking
about the type class MonadState, which is something different than the Statemonad, although they seem somehow
related. And then, the documentation for State and StateT doesn’t contain links to source code, and that makes
us unhappy. But then, if you dig around a bit more, you’ll find Control.Monad.Trans.State, which points us to
Control.Monad.Trans.State.Lazy, and that module contains what seem to be duplicate definitions of State and
StateT, this time with source links, but MonadState is now nowhere to be found. But what about our imports?
We’ve been importing Control.Monad.State, and it’s been working for us. Should we keep doing that? Should
we import Control.Monad.Trans.State, or maybe even Control.Monad.Trans.State.Lazy? Or should we
just go home, have a good cry, and reconcile ourselves to a life of writing JavaScript? No, not that. The short answer
is that we should import Control.Monad.State, but get our documentation from Control.Monad.State.Lazy.
The rest of the lecture constitutes the long answer.

The fundamental idea behind the mtl is that derived types can preserve structure (i.e., capabilities of the types from
which they’re derived), and that preserved structure can be realized programmatically via automatically derived
instances of typeclasses. This has the effect at library use time of considerable functionality “coming along for free,”
as we saw when we implemented Parser.hs using monad transformers: not only did we get put and friends (as
you’d expect from something built using StateT), we got Functor, Applicative, Monad, and other typeclass
instances.

IdentityT

There is, unsurprisingly, an IdentityT monad transformer. The definition of IdentityT can’t be surprising:

newtype IdentityT m a = IdentityT { runIdentityT :: m a }

This is just an untransformed m a in a (virtual) IdentityT box. We’ll look at IdentityT as a simple setting in
which we can get our bearings. First of all, IdentityT is a monad transformer, and so is itself an instance of the
MonadTrans class:

class MonadTrans t where
lift :: Monad m => m a -> t m a

i.e., IdentityT possesses a lift function that maps the untransformed monad m a into the transformed monad
IdentityT m a. Instances t of MonadTrans are expected to satisfy a couple of laws:

• return = lift . return
1RC: This chapter was last updated in 2016.
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• lift (m >>= f) = lift m >>= (lift . f)

These look mysterious, in part because the types are hidden from us, but they’re well motivated and so are easy to
understand. E.g., if we start with a value object of type a, there are two natural ways to embed it into the transformed
monad t m a. The first is directly via t m’s return function, the second is indirectly, from a to m a via m’s return
function, and from there to t m a via t m’s lift. The first law says that two ways must produce the same value in
t m a.

The second law says something similar. If we have a binding m >>= f in the untransformed m a, there are two
natural ways that we can go about lifting the result into the transformed monad t m a. The first, as before, is
directly via t m a’s lift function. The second is by lifting (>>=)’s arguments, resulting in lift m and lift . f,
and applying (>>=) in the transformed monad t m a. Again, these two different natural ways of lifting a binding
must produce the same value in t m a.

The instance definition for MonadTrans IdentityT is straightforward—we just take a value in m a, and drop it in
a (virtual) IdentityT box.

instance MonadTrans IdentityT where
lift = IdentityT

More complicated monad transformers will have more complicated definitions of lift.

Next up, we have instances (when appropriate) for IdentityT m of Functor, Applicative, Foldable, and of
course Monad, MonadPlus, and a few other type classes we haven’t met yet. These are all pretty simple, with all of
the activity taking the form of traffic in (virtual) boxing and unboxing. To this end, the following helper functions
are defined:

mapIdentity :: (m a -> n b) -> IdentityT m a -> IdentityT n a
mapIdentity f = IdentityT . f . runIdentityT

lift2IdentityT ::
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(m a -> n b -> p c) -> IdentityT m a -> IdentityT n b -> IdentityT p c
lift2IdentityT f a b = IdentityT (f (runIdentityT a) (runIdentityT b))

Note that lift2IdentityT is just a binary version of mapIdentity, it’s impressive type notwithstanding, and both
simply lift functions on untransformed monads to functions on transformed monads. We’re now ready to define
some instances:

instance (Functor m) => Functor (IdentityT m) where
fmap f = mapIdentityT (fmap f)

instance (Foldable f) => Foldable (IdentityT f) where
foldMap f (IdentityT a) = foldMap f a

instance (Applicative m) => Applicative (IdentityT m) where
pure x = IdentityT (pure x)
(<*>) = lift2IdentityT (<*>)

instance (Monad m) => Monad (IdentityT m) where
return = IdentityT . return
m >>= k = IdentityT $ runIdentityT . k =<< runIdentityT m

The most interesting thing here is the definition of (>>=) in the monad instance. Note the use of a right-to-left
version (=<<) of bind, and how this mixes better with (.). We solved the same problem earlier, but by resolving
the follow of compositions and binds in the other direction, using (>>>). The critical thing to notice is how the
we’re using the (>>=) from the untransformed monad to define (>>=) in the transformed monad. Our code is
all about making sure that things get boxed or unboxed as needed. Now, let’s look at a couple of more interesting
monad transformers.

StateT

The StateT monad transformer has everything going for it so far as this lecture is concerned. It’s powerful and
even somewhat familiar. But there are a few interesting twists and turns in its implementation, and understanding
it will go a long way to helping you understand how the monad transformer library as a whole is implemented, and
why. We’ll start by considering the definition:

newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }

This type isn’t really surprising, the only question being “where do we stick the inner monad m into the state
transformation function?” There are at least three plausible answers,

• m (s -> (a,s))

• s -> m (a,s)
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• s -> (m a,s)

Perhaps unsurprisingly, the choice taken is one that can’t be obtained by simply stacking untransformed monads.
Of course, we use StateT as a way to define functions that we’re latter going to want to run via runStateT or one
of its friends. But there’s a trickiness with any of these, because the result returned is going to be in terms of the
untransformed monad m. This is explicit in runStateT :: StateT s m a -> s -> m (a,s), but requires a bit
more work with the others, e.g.,

evalStateT :: (Monad m) => StateT s m a -> s -> m a
evalStateT m s = do

(a, _) <- runStateT m s
return a

Note here that I’m pulling a few minor cheats on you, as I will throughout this lecture (and indeed, already had).
This is the implementation of evalStateT from Control.Monad.Trans.State.\textit{Strict}, not Lazy.
The difference is a minor technicality in pattern matching that’s not important for this lecture. I’m making a few
other pedagogical simplifications too, but nothing you can’t puzzle out from the actual code.

Of course, we want types that result from applying StateT s to a monad m to be monads themselves, hence

instance Monad m => Monad (StateT s m) where
return = lift . return
m >>= f = StateT $ \s -> do

(a,t) <- runStateT m s
runStateT (f a) t

Here, the focus should be on the definition of (>>=), in which the body of the lambda form \s -> ... is an
object of type m (a,s). As before, we rely on (>>=) in the untransformed monad m (a,s) (here hidden by do
sugar) to extract the (result,newState) pair, which is then handed off to runStateT again. This is essentially
the same as the naïve code for (>>=) in State, albeit with a monadic binding (>>=) replacing a let binding. We’ll
see this again.

Instances of Functor, Applicative, Alternative, and MonadPlus and similar type classes are also provided,
when the untransformed monad has the corresponding instance. It’s worth noting the that in the particular case of
Applicative, it suffices that the inner type (not necessarily a monad) merely be a functor.

We make StateT into an instance of a MonadTrans by providing an appropriate lift:

instance MonadTrans (StateT s) where
lift m = StateT $ \s -> do

a <- m
return (a,s)

Now that Haskell requires that every monad is a functor, we can have write lift more concisely as
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instance MonadTrans StateT where
lift m = StateT$ \s -> (`(,)` s) <*> m

The implementations of get, put and modify, are built on that of state:

state :: (s -> (a,s)) -> StateT s m a
state f = StateT $ return . f

i.e., state puts in a StateT box the result of applying the function f to a state, obtaining a (result,newState)
pair, which is then lifted into the monad m (a,s) via return. With this:

get :: StateT s m s
get = state $ \s -> (s,s)

put :: s -> StateT s m ()
put t = state $ \s -> ((),t)

modify :: (s -> s) -> StateT s m ()
modify f = state $ \s -> ((),f s)

Now we encounter that extra layer of trickiness, alluded to at the beginning of the lecture. The class definition for
StateT isn’t in Control.Monad.State, or even Control.Monad.State.Lazy, it’s in Control.Monad.Trans.State.Lazy,
for two reasons. First of all, Control.Monad.State.Lazy relies on functional dependencies, an extension to
Haskell implemented inGHC, but not in all Haskell systems. Non-GHC systems have to include Control.Monad.Trans.State,
and lose the advantages of the new facilities in Control.Monad.State.Lazy. Second, for GHC, we’re going to hide
the definitions of put, get, and state from Control.Monad.Trans.State.Lazy, exposing instead the definitions
that come from the MonadState type class:

class Monad m => MonadState s m | m -> s where
get :: m s
put :: s -> m ()
state :: (s -> (a, s)) -> m a

Note the functional dependency (aka, fundep) m -> s| in the class declaration. This is indicates a commitment from the
programmer toGHC that there can’t be distinct s and t for which there are MonadState s m and MonadState t m
instances.To define an instance of MonadState, it is necessary to define either get and put, or state. The instance
for StateT s m is particularly easy:

import qualified Control.Monad.Trans.State.Lazy as Lazy (StateT, get, put, state)

instance Monad m => MonadState s (Lazy.StateT s m) where
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get = Lazy.get
put = Lazy.put
state = Lazy.state

But the virtue of MonadState becomes apparent if we take a look back at IdentityT. The punchline here is the
following instance declaration:

instance MonadState s m => MonadState s (IdentityT m) where
get = lift get
put = lift . put
state = lift . state

The point here is that if m is a state monad with state s, then IdentityT m is also a state monad with state s. Or,
to say the same thing in slightly different words, IdentityT preserves the MonadState s property. And this saves
us from having to remember how many layers deep the StateT actually is, and therefore how many times we have
to apply lift to get the state in or out of the monad. We can just use get, put, state, and their friends on the
transformed monad, is if it were a plain old-fashioned state monad. That is very convenient.

WriterT

The Writermonad is usually used to implement logging. I think of a Writer as being half of a State, in that we’re
producing something like a state on output, we’re just not consuming state on input. And like the State monad’s
state, the log we’re building is hidden.

We’ll do a quick example once we made some introductions:

class Writer w a = { runWriter :: (a,w) }

Our first problem is “how do we make Writer into a monad.” The hard part of the job is usually in defining (>>=).
In the state monad, (>>=) handled the states by hooking up the output state of the first argument’s state-transition
function to the input state of the second monad, which we got by applying the second argument, a Kleisli arrow, to
the value that came through the binding. That way, we ended up with one input state, and one output state, and
all was well. This can’t work the same way with writers, because there’s no input on the second monad to attach
the output of the first. The plumbing is just different. Instead, we’ll combine the logs, and this requires some sort
of binary operator, which is going to have to be associative if (>>=) is to be associative. The implementation of
return will require a identity. So we’re going to need to require that w is a Monoid, because that’s precisely what
monoids give us: an associative binary operator with identity.

instance (Monoid w) => Monad (Writer w) where
return a = Writer $ (a,mempty)
m >>= f = Writer $ let

(a,w1) = runWriter m
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(b,w2) = runWriter $ f a
in (b,w1 <> w2)

The practical use of writer monads relies, much like state monads, on a scant handful of functions that enable us to
interface with the monad, without dwelling on its implementation. The first of these is tell, which is similar to
put, in that it writes its argument to the log:

tell :: (Monoid w) => w -> Writer w ()
tell w = Writer ((), w)

The listen function is analogous to State’s get, but different in that it takes a writer as an argument, and it returns
the result returned by the argument monad along with its log:

listen :: (Monoid w) => Writer w a -> Writer w (a,w)
listen m = Writer $ let (a, w) = runWriter m

in return ((a, w), w)

The censor function is analogous to State’s modify, in much the same way that listen is analogous to put, in
that it takes a writer monad as an argument, and applies the argument function to its argument’s log, packaging the
result.

censor :: (Monoid w, Monad m) => (w -> w) -> Writer w a -> Writer w a
censor f m = Writer $ let (a, w) = runWriter m

in return (a, f w)

The following, somewhat contrived, example illustrates the use of Writer:

import Control.Monad.Writer

type LogApply = Writer [String]

logFunction :: (Show a, Show b) => String -> (a -> b) -> a -> LogApply b
logFunction name f = \a -> do

let b = f a
tell $ ["Applying " ++ name ++ " to " ++ show a ++ " resulting in " ++ show b ++ "."]
return b

logSquare, logDouble, logSuccessor, logPredecessor :: (Show n,Num n) => n -> LogApply n
logSquare = logFunction "square" (^2)
logDouble = logFunction "double" (*2)
logSuccessor = logFunction "successor" (+1)
logPredecessor = logFunction "predecessor" (subtract 1)
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computation :: LogApply Integer
computation = return 10 >>= logPredecessor

>>= logSquare
>>= logSuccessor
>>= logDouble

main :: IO ()
main = do

let log = execWriter computation
putStr $ unlines log

When run, this produces the output:

Applying predecessor to 10 resulting in 9.
Applying square to 9 resulting in 81.
Applying successor to 81 resulting in 82.
Applying double to 82 resulting in 164.

This is, perhaps, not truly inspiring, but it does illustrate the sort of thing that Writer makes easy.

Of course, this whole discussion about Writer glosses over the same sort of complexities we saw with State. In
reality, there’s a WriterT monad transformer, where

newtype WriterT w m a = WriterT { runWriterT :: m (a,w) }
type Writer w = WriterT w Identity

In this case the contribution of WriterT isn’t in the type (which we could arrange by ordinary stacking), but in the
plumbing,

instance (Monad m, Monoid w) => Monad (WriterT w m) where
return a = WriterT $ return (a,mempty)
m >>= g = WriterT $ do

(a,w1) <- runWriterT a
(b,w2) <- runWriterT (g a)
return (b,w1 <> w2)

Note how this adapts the definition we gave for (>>=) for an ordinary writer, by replacing the let bindings by
monadic bindings, packaging our results with return.

Similar changes get made to tell, listen and censor, e.g.,

listen :: (Monad m, Monoid w) => WriterT w m a -> WriterT w m (a,w)
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listen m = Writer $ do
(a, w) <- runWriter m
return ((a, w), w)

Aswith State, these types and functions get defined in Control.Monad.Trans.Writer.Lazy. And in Control.Monad.Writer.Lazy,
contains the MonadWriter type class, and associated functions and instances:

class (Monoid w, Monad m) => MonadWriter w m | m -> w where
writer :: (a,w) -> m a
tell :: w -> m ()
listen :: m a -> m (a, w)

censor :: MonadWriter w m => (w -> w) -> m a -> m a
censor f m = do

(a,w) <- runWriterT m
return (a, f w)

Naturally, monads built by the WriterT w monad transformer are instances of MonadWriter w:

instance (Monoid w, Monad m) => MonadWriter w (Lazy.WriterT w m) where
writer = Lazy.writer
tell = Lazy.tell
listen = Lazy.listen

Likewise, anymonad mwith a MonadWriter w m instance remains a MonadWriter wwhenwrappedwith IdentityT
or a StateT s:

instance MonadWriter w m => MonadWriter w (IdentityT m) where
writer = lift . writer
tell = lift . tell
listen = Identity.mapIdentityT listen

instance MonadWriter w m => MonadWriter w (Lazy.StateT s m) where
writer = lift . writer
tell = lift . tell
listen = Lazy.liftListen listen

Likewise, anymonad mwith a MonadState s m instance remains a MonadState s mwhenwrappedwith a WriterT w,
and the associated code is found in Control.Monad.State.Lazy.

And that’s the way the whole mlt is built. Associated with each monad transformer is a type class that defines the
properties that transformer adds. For each pair of a transformer and another transformer’s associated type class,
there’s an instance of that type class, when possible, that preserves that property in a transformed monad. The
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exception to all of this is IO, as it so often is, but that’s a puzzle for another day.
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Chapter 23

Scalability

Programming requires attention to correctness and efficiency. The dominant focus of this class has been on correctness,
and on using the type system of Haskell and the type classes of its library as aids to writing correct code. This reflects
our ontology of programming: it’s easier and more satisfactory to tune correct code so that it runs faster, than it is
to debug fast code so that it runs correctly. Getting it right, in our view, is a constraint, it’s something we must do.
Making it fast is a goal, something we hope to do, and want to make progress towards.

In this, the Document type from our second State lecture fails the test of efficiency. It is a common failing, and one
that’s worth understanding. We build our document from front to back, in effect, building

(... ((s1 ++ s2) ++ s3) ... ++ sn)

Let’s recall the implementation of (++):

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

It is easy to show, by induction on the length of xs, that fully evaluating x ++ y requires |x| new (:)’s. The cost
of building these (:)’s is the dominant cost of evaluating the (++).

Consider now the overall cost of building a string via (++). For the sake of simplicity, we’ll consider (((s1 ++ s2) ++ s3) ++ s4).

operation cost
s1 ++ s2 |s1|
(s1 ++ s2) ++ s3 |s1|+ |s2|
(((s1 ++ s2) ++ s3) ++ s4) |s1|+ |s2|+ |s3|

So the overall cost is the sum of these operation costs, i.e., 3|s1|+2|s2|+|s3|. Contrast this to the cost of building the
same string via the same operations, but with the (++)’s associated to the right, i.e, s1 ++ (s2 ++ (s3 ++ s4)):
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operation cost
s3 ++ s4 |s3|
s2 ++ (s3 ++ s4) |s2|
s1 ++ (s2 ++ (s3 ++ s4)) |s1|

So the overall cost of building the string this way is |s1|+ |s2|+ |s3|, because each (:) we build contributes to the
final answer, whereas we build a lot of ephemeral (:)’s when the (++)’s associate to the left.

This can make a difference! Building a moderately complex web page might involve thousands of calls to string,
meaning that we end up re-copying the (:)’s associated with early calls to string thousands of times.

Fortunately, we can address this problem rewriting only a little bit of code, as there’s an abstraction barrier between
Document and HTML, so we need only consider the definition of Document, and make sure that the string and
render functions are aligned with it. We will explore several different solutions. For the sake of simplicity, we
won’t do our usual code transformations, but will just present natural first-pass code.

Let Simon Do It

An efficient solution to problems like this is to rely on the fact that others have encountered them before, resulting
in carefully engineered, widely-deployed, and so well-tested solutions. In this case, it’s well known that String is
inefficient, not only in the cost of operations like (++), but also in terms of storage space. The module Data.Text
uses a packed utf-16 representation of Unicode, while the Data.Text.Lazy module adds to this by considering
chunked representations (i.e., the text is a sequence of packed utf-16 representations). We can then define:

import Data.Text.Lazy

type Document = State Text

{- Append a String to a Document. -}

string :: String -> Document ()
string t = modify $ \s -> append s (pack t)

{- Render a Document a as a String -}

render :: Document a -> String
render doc = unpack $ execState doc empty

Note that the pack and unpack functions convert between String and Text values, and that append is used to
append Text values.

It turns out that there are a fair number of alternative representations for what we think of as list-like data, including
Data.Array which allows efficient access to lists of fixed length, and Data.Sequence which allows for efficient
access to both the front and back of a list. The existence of these alternative representations explains the existence
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of many of the standard type classes, e.g., Functor, Foldable, etc., all of which capture standard list-programming
techniques. To the extend that we write our list-based code using the functionality of these type classes, we abstract
away from specific representation decisions, making it easier to transition from simpler to more complex (and
efficient) data representations later on.

The Composition Trick, a.k.a., Difference Lists

This is a technique that is used in several places in the Haskell library. We build up the efficient right-associative use
of (++) via a composition of functions that associates to the left. There’s something deeply sneaky about this, as
we’re trading off adding content to beginning, for a promise to content to the end!

type Document = State (String -> String)

The idea is that the function we’re building tacks the String we’ve built onto its argument.

{- Append a String to a Document. -}

string :: String -> Document ()
string t = modify $ \f -> f . (t ++)

{- Render a Document a as a String -}

render :: Document a -> String
render doc = execState doc id ""

Note in particular our implementation of render. We start the ball rolling by passing the identity function to
execState, which represents an empty document. When we get the final function out, we apply it to the empty
string, as there is no ”rest of the string” to build.

Be Lazier!

The idea here is to defer the (++)’s to the end. So we build a list of strings to combine, but we organize that list
from back-to-front, i.e., reversed in order from the document we intend to produce. This means that the actual
joining together of the lists happens with render, rather than with string:

type Document = State [String]

{- Append a String to a Document. -}

string :: String -> Document ()
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string t = modify $ \s -> t : s

{- Render a Document a as a String -}

render :: Document a -> String
render doc = concat . reverse . execState doc $ []

Reflections

All of these changes will turn a program that had quadratic run-time to one that has linear run-time. The tuned
programs scale. But what is perhaps most remarkable about this exercise is that in each case, the new code ran
correctly the first time! This had much to do with the work we put into our initial list-based solution, and in
particular, the simplicity of the Document abstraction, and how thoroughly the rest of the code was decoupled from
the particular representation choice we made within Document.

Programs work at different scales. Inefficiencies can creep in at any of these scales, e.g., in the algorithms used, in the
data representations used, in the efficiency with which those representations are implemented. Traditional languages
try to snuggle up to the underlying hardware (this is especially so in C), and naturally draw the programmer’s
attention to improving the efficiency of the chosen implementation, which is not a bad thing, except to the extent
that it draws their attention away from larger inefficiencies in the algorithms and representation choices, and thereby
creates an investment in the higher-level choices that were made. Haskell seems in practice to encourage more of a
top-down approach, and this tends to deliver greater fruit faster.
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Chapter 24

Seq and All That

Evaluation: the Term Model.

Haskell is defined in terms of lazy evaluation, which we can describe briefly as a computational plan that evaluates
only what is necessary, and when it evaluates something, it only evaluates it once. For the most part, we can get away
with this sort of informal description, but there comes a point when we can’t, and need a better approximation.

Let’s start by considering a simple function:

mySumR :: [Int] -> Int
mySumR [] = 0
mySumR (n:ns) = n + mySumR ns

This is definition of summation via a natural recursion, with the terminal R in mySumR intended to recall foldr.
This code works well, at least until we try to sum a long list:

main = print $ mySumR [1..10^8]

This computes correctly, but it takes a surprisingly long amount of time to do so (a bit over 4.5 seconds, even at
-O2). Profiling this code produces a somewhat surprising and disconcerting output:

18,495,737,248 bytes allocated in the heap
1,390,456 bytes copied during GC

1,674,375,728 bytes maximum residency (13 sample(s))
31,592 bytes maximum slop
2458 MB total memory in use (38 MB lost due to fragmentation)
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The thing to notice here is the memory footprint: At some point in the computation, we were using 1.67GB of
heap, and the total memory footprint reached 2.46GB. That’s a whole heck of a lot of memory for what seems like
a fairly simple task. A few moments of introspection reveals a possible cause: as we work our way through the list,
we build an arithmetic expression to evaluate. But that expression grows to be essentially the size of the list we’re
processing, and we can’t make progress on reducing that expression until we’ve built all of it. Ugly, especially as we
know that traditional languages can do this in constant space, cf.,

def sum(ns):
acc = 0
for n in ns:

acc += n
return acc

print(sum(range(1,10**8+1)))

and we’d like to think that Haskell could too.

A simple analysis of this program shows that sum is accumulating the sum of from the front of the list to the back,
unlike mySumR which built up an expression for the sum from back to front. Indeed, the iterative structure uses
a register variable to hold a partially evaluated sum, rather than building up the stack of deferred function calls
implied by a recursive function. There are at this point two fairly natural ways to think about this. Former Scheme
programmers would think about tail-recursion and register variables, and note that mySumR isn’t tail recursive, and
so would look for a tail recursive analog to the Python program. Cynical students, i.e., students who know me,
might read something into my emphasis of the foldr-like structure of mySumR, and wonder about what a foldl
solution might look like. Either way, we end up with essentially the same code:

mySumL :: [Int] -> Int
mySumL = iter 0 where

iter r [] = r
iter r (n:ns) = iter (r+n) ns

A few moments of reflection around the notion of laziness, and we might even hope that our original program,
updated to use mySumL rather than mySumR might run in constant space. After all, if the list is being built up lazily
and consumed as it’s being built, there will never be more than a single (:) active at a time. We’re surprised
and, indeed, horrified, to discover that this hopeful change make our code perform much worse, requiring almost a
half-minute of run time and

26,620,313,904 bytes allocated in the heap
38,121,812,496 bytes copied during GC
7,934,690,960 bytes maximum residency (16 sample(s))
190,450,032 bytes maximum slop

17973 MB total memory in use (0 MB lost due to fragmentation)

Ouch!! That’s 7.94GB of heap, and 26.6GB of total memory allocation! Don’t try this on your laptop!
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Anyway, let’s try to understand what’s going on, by ”playing the computer,” and working our way through some
modest sized examples (summing [1..4]). We’ll use a simple term re-writing model, in which both the traditional
eager evaluation and Haskell’s lazy evaluation share the same re-write rules, but apply them in a different order.
A preliminary issue is that Haskell’s range notation [a..b] is syntactic sugar for enumFromTo a b, which we’ll
assume for our present purposes is defined as:

enumFromTo a b = case compare a b of
LT -> a : enumFromTo (succ a) b
EQ -> [b]
GT -> []

If we were doing the usual eager model of calculation, we have a pattern in which we first fully evaluate the argument
to mySumR:

mySumR [1..4]
==> mySumR (enumFromTo 1 4) -- desugar [..]
==> mySumR (1:enumFromTo 2 4) -- expand enumFromTo
==> mySumR (1:2:enumFromTo 3 4) -- expand enumFromTo
==> mySumR (1:2:3:enumFromTo 4 4) -- expand enumFromTo
==> mySumR (1:2:3:4:[]) -- expand enumFromTo

Note here that we’re eliding a few steps, e.g., around the evaluation of enumFromTo in order to focus on the evaluation
of mySumR.

Once the argument to mySumR is evaluated, we can replace the application by its definition, i.e.,

==> 1 + mySumR (2:3:4:[]) -- expand mySumR
==> 1 + (2 + mySumR (3:4:[])) -- expand mySumR
==> 1 + (2 + (3 + mySumR (4:[]))) -- expand mySumR
==> 1 + (2 + (3 + (4 + mySumR []))) -- expand mySumR
==> 1 + (2 + (3 + (4 + 0))) -- expand mySumR

Finally, we’d simplify the resulting expression:

1 + (2 + (3 + (4 + 0)))
==> 1 + (2 + (3 + 4))
==> 1 + (2 + 7)
==> 1 + 9
==> 10

You can clearly see in this process the building up of the complete list [1,2,3,4], and the building up of the full
arithmetic expression 1 + (2 + (3 + (4 + 0))). Now Haskell doesn’t work quite this way. Haskell is lazy. So

217



let’s work through a lazy evaluation. It starts out much the same way:

mySumR [1..4]
==> mySumR (enumFromTo 1 4) -- desugar [..]
==> mySumR (1:enumFromTo 2 4) -- expand enumFromTo

At this point, the argument to mySumR is sufficiently defined (it’s a cons) to determine that we’re in the cons case of
the definition of mySumR:

==> 1 + mySumR (enumFromTo 2 4) -- expand mySumR

At this point we can’t make progress on the addition, because its second argument isn’t sufficiently well-defined, and
we can’t make progress on mySumR, because its argument isn’t sufficiently well-defined, but we can make progress
on enumFromTo, concluding as follows:

==> 1 + (mySumR (2 : enumFromTo 3 4)) -- expand enumFromTo
==> 1 + (2 + mySumR (enumFromTo 3 4)) -- expand mySumR
==> 1 + (2 + mySumR (3 : enumFromTo 4 4)) -- expand enumFromTo
==> 1 + (2 + (3 + mySumR (enumFromTo 4 4))) -- expand mySumR
==> 1 + (2 + (3 + mySumR (4:[]))) -- expand enumFromTo
==> 1 + (2 + (3 + (4 + mySumR []))) -- expand mySumR
==> 1 + (2 + (3 + (4 + 0))) -- expand mySumR
...
==> 10

Notice that, as our intuition earlier suggested, there’s only a single (:) present in any of terms of the reduction
sequence. This means that we can garbage collect the list more-or-less as we construct it, and the list contributes
only a constant amount to our maximum active memory. But we’re not so fortunate with the arithmetic expression.
Too bad.

One thing to note here is that the results of eager and lazy evaluation are the same. This isn’t an accident, but instead
is a consequence of the Church-Rosser Theorem of the λ-calculus, which states that any two sequences of reductions
to a term t result in terms t1 and t2 that can be ”brought back together” by additional reductions. This is sometimes
called the confluence property. As normal forms can’t be further reduced, this means that if two normal forms result
from sequences of reductions applied to the same initial lambda-term, they must be equal. We’ll have a bit more to
say about this later.

So let’s consider mySumL. Again, we’ll first do this via eager evaluation, which begins much like the mySumR case by
expanding the full list:

mySumL [1..4]
==> mySumL (enumFromTo 1 4) -- desugar [..]
==> mySumL (1:enumFromTo 2 4) -- expand enumFromTo
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==> mySumL (1:2:enumFromTo 3 4) -- expand enumFromTo
==> mySumL (1:2:3:enumFromTo 4 4) -- expand enumFromTo
==> mySumL (1:2:3:4:[]) -- expand enumFromTo

At this point, we expand mySumL in terms of its local iter procedure, which we’ll indicate via mySumL.iter:

==> mySumL.iter 0 (1:2:3:4:[]) -- expand mySumL
==> mySumL.iter (0+1) (2:3:4:[]) -- expand mySumL.iter

Now, eager evaluation steps in at this point, and forces the full evaluation of the first argument to mySumL.iter:

==> mySumL.iter 1 (2:3:4:[]) -- simplify addition

The evaluation continues

==> mySumL.iter (1+2) (3:4:[]) -- expand mySumL.iter
==> mySumL.iter 3 (3:4:[]) -- simplify addition
==> mySumL.iter (3+3) (4:[]) -- expand mySumL.iter
==> mySumL.iter 6 (4:[]) -- simplify addition
==> mySumL.iter (6+4) [] -- expand mySumL.iter
==> mySumL.iter 10 [] -- simplify addition
==> 10 -- expand mySumL.iter via the [] case

The thing to note here is that, even though eager evaluation forced us to build the full list, we never had more than
a single pending addition. Eager evaluation enabled us not to spend space on the accumulating variable.

Let’s consider lazy evaluation of the same expression:

mySumL [1..4]
==> mySumL (enumFromTo 1 4) -- desugar [..]

At this point, we don’t have to wait for any evaluation of the argument to mySumL, so we expand immediately:

==> mySumL.iter 0 (enumFromTo 1 4) -- expand enumFromTo

To expand mySumL.iter further, we need the second argument to be more well-defined, so our evaluation continues
there:

==> mySumL.iter 0 (1:enumFromTo 2 4) -- expand enumFromTo
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And now the second argument is sufficiently well-defined to permit the expansion of mySumL.iter:

==> mySumL.iter (0+1) (enumFromTo 2 4) -- expand mySumL.iter

At this point, we’d like to continue (as we did in the eager case) with the evaluation of the sum, but mySumL.iter
doesn’t depend on the value of its first argument to determine which case to apply, so it invests its evaluation effort
on the second argument. This is a very important point, and I want you to think about it until you understand why
Haskell makes the choice it’s making. The evaluation continues:

==> mySumL.iter (0+1) (2:enumFromTo 3 4)
==> mySumL.iter ((0+1)+2) (enumFromTo 3 4)
==> mySumL.iter ((0+1)+2) (3:enumFromTo 4 4)
==> mySumL.iter (((0+1)+2)+3) (enumFromTo 4 4)
==> mySumL.iter (((0+1)+2)+3) (4:[])
==> mySumL.iter ((((0+1)+2)+3)+4) []
==> ((((0+1)+2)+3)+4)

Exercise 24.1 Annotate the reduction steps above in the style of the foregoing discussion.

The evaluation now amounts to simplifying an algebraic expression. But the important thing to note here is that
our lazy evaluation commits the complementary sin to eager evaluation: it doesn’t require that the whole list ever
be resident in memory, but it does require that the whole algebraic expression be resident in memory.

It seems that our search for a constant-space summation fails for one reason with eager evaluation, and for another
with lazy evaluation. We can trace out an evaluation process that would do this...

Exercise 24.2 Write down an evaluation sequence in the style of above, which never involves more than a single cons or
addition.

But can we make Haskell produce this trace?

Evaluation strategy vs. strictness

Before getting on with directing evaluation strategies, let’s talk briefly about strictness. The Church-Rosser Theorem
entails that two reduction sequences that begin with the same term, and end with normal forms, must end with the
same normal form. But this does not say that if one evaluation strategy results in a normal form, then all evaluation
strategies result in a normal form. Here’s a simple example. Consider the simple infinite loop function:

loop :: a
loop = loop
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and the evaluation of const 0 loop. If we use eager evaluation, we’ll attempt to evaluate the loop argument,
resulting in a high speed twiddling of our thumbs:

const 0 loop
==> const 0 loop -- expand loop
==> const 0 loop -- expand loop
==> const 0 loop -- expand loop
...

But if we use normal order, expanding the definition of const before attempting to evaluate loop:

const 0 loop -- expand const, done
==> 0

We’ll say that a function f is strict in one of its arguments with respect to an evaluation strategy if the divergence of
that argument forces the divergence of the function when evaluated using that strategy. Since languages usually define
evaluation strategies, we’ll often speak of the strictness (or lack thereof) of a function without explicit reference to
that language’s defined evaluation strategy.

Eager (sometimes called call-by-value) is the strictest evaluation strategy: eager evaluation evaluates every subterm of
a term, hence, if any sub-term diverges, so too with the top-level evaluation. Some consider this to be a bug, others
consider it to be a feature. Lazy evaluation comes with the complementary promise: if any evaluation strategy
succeeds in reducing a term to normal form, it will succeed. Again, some consider this to be a bug, others consider it
to be a feature. But the basic value proposition of normal-order evaluation is that it will evaluate every sub-expression
as often as it needs to, which may well be a lot of times, but it may also be zero times.

GHC and Lazy Evaluation

At this point, I feel a slight need to come clean. If you’ve been following along with ghc, you might have noticed
that it’s perfectly happy and reasonably efficient in evaluating mySumL [1..10^8], even on laptops with modest
memory. I’m tempted to ask, what do you believe? Your humble instructor who would never knowingly lead you
astray, or your own lying eyes? But I probably wouldn’t be happy with the answer.

The truth here involves a great, and even surprising subtlety. Haskell does not require that Haskell compilers/in-
terpreters use lazy evaluation. It just requires that they’ll always produce as well-defined a result as lazy evaluation
would. Now the people who write ghc are very clever, and examples like the one above are embarrassing. So ghc
does a strictness analysis of the code it compiles, even at normal optimization levels. I actually had to explicitly turn
off strictness analysis to get the results above. This strictness analysis enables ghc to find the ”golden path” evaluation
that runs in constant space. This might lead you to conclude, ”I’ll just use ghc and not worry.” While using ghc is
a good idea, the problem with this is that the strictness analyzer isn’t omnipotent, and exactly the issue described
here can and does happen with real-world code. So we’ve wasted no effort in this discussion, we’ve just employed a
pedagogical example that’s handled differently (i.e., better) in practice.
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Graph Reduction

Our discussion of evaluation strategies assumed a term evaluation model. A fuller understanding of lazy evaluation
(vs. the lambda-calculus’s normal-order evaluation) requires a more sophisticated mental model of graph reduction.
We’ll give a brief (and as usual, incomplete) account of that, before returning to the problem of a constant space
summing.

Let’s consider a very simple program:

square x = x * x

main = print $ square (3+3)

Again, the print function will drive the evaluation of square (3+3). We’ll start with the following graph structure:

Our lazy evaluation begins by replacing the square node with a multiplication node, in which the argument to
square ends up as both arguments to the resulting multiplication:

The next step of the evaluation looks at the first argument to (*), indicated above by a darker line, to the (+) node,
and since both of its arguments are already reduced, it is reduced to 6.
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It is crucially important to understand that because of the sharing involved, the effect of reducing 3+3 to 6 in the
first argument to (*) also reduces it in the second, as shown above. Thus, when the evaluation of the arguments
to the (*) moves to the second argument, the evaluator finds that node already evaluated, and needs to do no more
work there. Instead, the top level (*) is ready to be evaluated, and its node is replaced by 36:

This brief discussion hints at the complexity involved. For a slightly more complete discussion, consult HaskellWiki:
Graph Reduction.

Returning to the main problem

Let’s recall the space usage issue from the beginning of the lecture. We want to sum [1..10^8], but without
incurring excessive space use. We know that there is a reduction sequence that requires only constant space based
on the definition of mySumL, but that both eager and lazy evaluation result in the use of huge amounts of memory.

An ad hoc solution.

We’ll start by revisiting the lazy evaluation of mySumL [1..4], and stop at the moment the train left the tracks:

mySumL [1..4]
==> mySumL (enumFromTo 1 4) -- desugar [..]
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==> mySumL.iter 0 (enumFromTo 1 4) -- expand enumFromTo
==> mySumL.iter 0 (1:enumFromTo 2 4) -- expand enumFromTo
==> mySumL.iter (0+1) (enumFromTo 2 4) -- expand mySumL.iter

At this point, the next reduction step focusses on the second argument to mySumL.iter, because it doesn’t depend
on the first. What if, what if, what if, ... we could somehow make it depend on that first argument?

Consider the following, rather odd code:

mySumWithForce :: [Int] -> Int
mySumWithForce = iter 0 where

iter r [] = r
iter r (n:ns)

| force r = iter (r+n) ns
force n = n /= 0 || n == 0

The idea here is that the force function will always return True, but even the mighty ghc can’t figure this out. So
it has to run the test, and thereby evaluate r before it can expand MySumWithForce.iter. This keeps the argument
simple, if not completely reduced, and allows the code to run in constant space. Oddly enough, that’s what the
profile says:

20,800,063,448 bytes allocated in the heap
3,735,120 bytes copied during GC

46,232 bytes maximum residency (2 sample(s))
31,592 bytes maximum slop

2 MB total memory in use (0 MB lost due to fragmentation)

The difference between 46K and 7.94GB should definitely get your attention! Factors on the order of 200,000
usually get mine.

Introducing seq

This brings us to one of the more mysterious functions of Haskell, seq.

seq :: a -> b -> b

Informally, seq sequences the reduction of its arguments to weak head normal form (i.e., just enough to do the
weakest possible non-trivial pattern match). More precisely, evaluation in Haskell is built around forcing a thunk
(a delayed evaluation) through just enough steps so that it is no longer simply a thunk, but a non-trivially defined
partially evaluated expression. For algebraic types, this means that the top-level constructor has been determined.
For atomic types like Int, it amounts to full evaluation. Function types don’t get reduced at all (hence, “weak”).
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Using seq effectively is a difficult task, and there’s many a Haskell programmer with a weak understanding of seq
who tries to deal with space leaks by sprinkling seq’s throughout their code, and hoping for the best. This is rarely
an effective strategy, and it’s often counterproductive. Extra strictness is usually going to make your program run
slower. But the code we’ve been working up sets us up for the proper use of seq as a replacement for force:

mySumWithSeq :: [Int] -> Int
mySumWithSeq = iter 0 where

iter r [] = r
iter r (n:ns) =

let r' = r+n
in r' `seq` iter r' ns

This has the effect of reducing the accumulator argument in the call to iter to weak head normal form (i.e., fully
evaluating it because it is an atomic type), before we make the call. This use of seq as an infix operator, together
with a let binding of the arguments of a function, is fairly common.

Unsurprisingly, mySumWithSeq has constant space use.

12,800,064,600 bytes allocated in the heap
1,181,848 bytes copied during GC

46,232 bytes maximum residency (2 sample(s))
31,592 bytes maximum slop

2 MB total memory in use (0 MB lost due to fragmentation)

Bask in the efficiency of a well-managed evaluation process!

Bang!

Although seq is in some sense all you need, in practice many Haskell programmers find it difficult to use. So Haskell
provides an alternative: strictness annotations on the components of algebraic data types, which have the effect of
making constructors (when used as functions) strict, i.e., they evaluate their arguments to weak head normal form.
Haskell programmers can then use these strictness-augmented type constructors to tune the use of strictness in their
code. Let’s consider a simple example:

data SPair a b = SPair !a b

mySumWithSPair :: [Int] -> Int
mySumWithSPair ns = iter (SPair 0 ns) where

iter (SPair r []) = r
iter (SPair r (n:ns)) = iter (SPair (r+n) ns)

Note the use of an exclamation point to indicate that the first argument (which we’ll use to hold the register in the
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computation) is strict.

The idea here is that the arguments to mySumWithSPair.iter are marshalled into an SPair value, whose strictness
annotation forces the evaluation of the first argument, and thereby avoids building a large deferred calculation. This
program results in slightly more than twice the overall allocation of space (those SPairs aren’t free), but essentially
the same maximum residency as mySumWithSeq.

Bang patterns

The problem with strictness annotations is that they seem to require the definition of a new data type for every
function that benefits from additional strictness. GHC is experimenting with an alternative approach: the addition of
strictness annotations to the arguments to a function. Consider:

mySumWithBang :: [Int] -> Int
mySumWithBang = iter 0 where

iter r [] = r
iter !r (n:ns) = iter (r+n) ns

This code is identical with that of mySumL, save for the exclamation point preceding r in the second clause of the
definition of mySumWithBang.iter. The effect of the bang is to require the (partial) evaluation of the corresponding
argument before a match can be made. Note that bang patterns are specific to GHC, and are not a feature of the Haskell
definition, moreover, that their use requires the {-# LANGUAGE BangPatterns #-} pragma, and/or the equivalent
command-line flag during compilation.

Conclusions

The lazy evaluation process of Haskell can sometimes result in shocking large space use, which in turn can result
in poor runtime performance. Identifying the causes of excessive space use requires a more complete understanding
of Haskell’s evaluation process. Titrating a bit of strictness in at the right points can make a huge difference. But
strictness isn’t a magic bullet, as strictness in the wrong places can actually hurt overall performance.

In terms of time complexity, mySumWithSeq was by far the fastest, requiring about 1.3 seconds. The other space-
efficient programs typically required about twice as much time, and the space inefficient programs could require up
to a half a minute, so this matters. Oh, and that Python code? 5.8 seconds.
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Chapter 25

Case Study: Propositional Logic

25.1 Mathematical Preliminaries

Propositional Logic is a simple, formal means for capturing certain kinds of rigorous argument. Facility in propo-
sitional (and later, quantificational) reasoning is a foundational skill for programming, as well as a nice domain area
for us to play in as programmers.

We assume the existence of an infinite (usually countable) set of atomic propositional variables V . Propositional
formulae are expressions built out of propositional variables, and the boolean constants true and false, using the
boolean operators of negation/not (¬), conjunction/and (∧), disjunction/or (∨), and implication/implies (→), e.g.

a ∧ (¬b ∨ c) → d

The parsing priority for these connectives is (from highest to lowest): ¬, ∧, ∨, and→. It might be helpful to think
of ∧ as being analogous to multiplication, and ∨ to be analogous to addition. This analogy runs deeper than just in
helping you understand how to parse boolean expressions: it also gives you some hints as to how to interpret them.

By convention, ∧ and ∨ associate to the left (just like multiplication and addition), but since they’re associative
operators, it doesn’t matter. Implies (→) is not associative. By convention it associates to the right, as in Haskell.

A valuation is a function from the set of propositional variables to the set of boolean values True (>) and False (⊥).
We will often use the Greek letter ν (nu) to denote a valuation. We lift valuations to propositional formulae by
describing truth-tables for the various propositional operators:

a b | ¬a a ∨ b a ∧ b a→ b

> > ⊥ > > >
> ⊥ ⊥ > ⊥ ⊥
⊥ > > > ⊥ >
⊥ ⊥ > ⊥ ⊥ >

227



Thus, e.g., if ν(a) = >, and ν(b) = ⊥, we can compute ν(a∨ b→ a∧ b) = ⊥. This is often done via a table, where
we write put a > or an ⊥ under each connective, as appropriate, e.g.,

a b | a ∨ b → a ∧ b

> ⊥ > ⊥ > ⊥
> ⊥

⊥

or in a more compressed

a b | a ∨ b → a ∧ b

> ⊥ > > ⊥ ⊥ > ⊥ ⊥

A propositional formula ϕ (phi) is a tautology if for all valuations ν, ν(ϕ) = >. A formula ϕ is satisfiable if there
exists a valuation ν such that ν(ϕ) = >. Note that ϕ is a tautology if and only if ¬ϕ is not satisfiable. The question
of how difficult, in general, it is to determine whether or not a given propositional formula is satisfiable is a complete
instance of the P vs. NP problem, one of the grand open problems of Computer Science.

Logicians care about the notion of a sound argument. In particular, let’s suppose H is a set of hypotheses, and ϕ is a
purported conclusion. Logicians want to define a notion of proof, which is a formal analog to the notion of a sound
argument from rhetoric. They would write H ` ϕ to mean that ϕ is a provable consequence of H.

The theory of provability for classical propositional logic has been completely worked out, although there are some
very deep computational questions (in the plural) that lurk here.

Definition of Proof: Let H denote a set of propositional formulae, and ϕ denote a single propositional formula.
An H-proof of ϕ is a sequence ϕ1, ϕ2, ..., ϕn of propositional formula such that

1. for each ϕi, either

a ϕi is an element of H, in which case we say that ϕi is a hypothesis or assumption,
b ϕi is a tautology, or
c there exist j, k < i such that ϕj ≡ ϕk → ϕi, in which case, we say that ϕi follows by modus ponens;

2. ϕn = ϕ.

Note that in many presentations of the definition of a proof, item 1.b is further restricted to being a substitution
instance of one of a finite set of tautological schemas.

Note that if ` ϕ, i.e., we can prove ϕ without hypotheses, then ϕ is a tautology. This follows from a simple
induction on proof length.

Also note that what’s happening with modus ponens looks a lot like a type calculation. This is no accident, although
working this connection out in detail involves a digression into the intuitionistic propositional calculus, which we
will forego, but hint at a lot.
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One of the great virtues of functional programming languages is that they can deal with systems like this fairly easily,
so it is no big deal to write a propositional proof-checker in a functional language like Haskell. It’s a bit more of a
challenge to write a proof-generator, though, which is one of the major intended applications of Haskell. But before
we get into coding, let’s work on developing some skill in proving theorems.

The Deduction Theorem is a tremendously useful meta-principle: if H,ϕ ` ψ, then H ` ϕ→ ψ. The proof of the
Deduction Theorem is by induction on proof length, and is routinely covered in an introductory logic class. The
Deduction Theorem often feels like cheating: not only do we end up with a simpler statement to prove, we have
more hypotheses with which to prove it.

The converse of the Deduction Theorem, i.e., if H ` ϕ → ψ then H,ϕ ` ψ, follows immediately from modus
ponens and from the monotonicity of ` with respect to the hypothesis set.

Short example: ` α→ β → α.

This is a tautology, but it’s easier to prove than to verify:

1. α, β ` α, hypothesis

2. α ` β → α, deduction theorem

3. ` α→ β → α, deduction theorem

This style of reasoning, using just hypothesis, the deduction theorem, and modus ponens, is called natural deduction,
and it is very powerful.

Now, it is not entirely irrelevant that const :: a -> b -> a in Haskell, and the type of the (pure) function
has essentially the form of the tautology we’ve just proven. Indeed, α → β → α is an intuitionistic/constructive
tautology, and all intuitionistic tautologies are classical tautologies (but not conversely!!).

Exercise 25.1 Give a natural deduction proof of (α → β) → (β → γ) → (α → γ). What standard Haskell function
has a similar type?

A key problem in the definition of a proof given above is “how do we know that a formula ϕ is a tautology?”
Basically, we have two choices at this point:

1. We can evaluate it for all valuations (note that we need only consider partial valuations, which are defined on
all of the variables that occur within ϕ, a set has size 2n if n distinct variables occur in ϕ).

2. We can prove it without hypotheses.

Quine’s method is often a useful third alternative. In Quine’s method, we chose a one variable x, and we create two
new formulae ϕ[x := >] and ϕ[x := ⊥], substituting > and ⊥ for x in ϕ. If both of these formulae are tautologies
(facts that we can use Quine’s method to verify), then the original formula is a tautology too. If either of this
formulae is not a tautology, then the original formula isn’t either.

What makes Quine’s method so useful is that we can often greatly simplify the formulae ϕ[x := >] and ϕ[x := ⊥],
using a few simple rules based on the truth tables above:
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• ¬> ≡ ⊥,

• ¬⊥ ≡ >,

• > ∧ x ≡ x,

• x ∧ > ≡ x,

• ⊥ ∧ x ≡ ⊥,

• x ∧ ⊥ ≡ ⊥,

• > ∨ x ≡ >,

• x ∨ > ≡ >,

• ⊥ ∨ x ≡ x,

• x ∨ ⊥ ≡ x,

• > → x ≡ x,

• x→ > ≡ >,

• ⊥ → x ≡ >,

• x→ ⊥ ≡ ¬x.

We’ll often add the rule

• ¬¬x ≡ x

as well.

We begin with a simple example.

Example: Show ϕ ≡ α → β → α is a tautology by Quine’s method. We begin by splitting on α. This gives us
two formulae: ϕ[α := >] ≡ > → β → >, and ϕ[α := ⊥] ≡ ⊥ → β → ⊥. The first of these reduces to > → >,
and thence to >; the second reduces directed directly to >. Both are tautologies, and therefore α → β → α is also
a tautology.

Our next example is a bit more complicated.

Example: Show ϕ ≡ (α ∨ β) → (α→ γ) → (β → γ) → γ is a tautology by Quine’s method.

We begin by splitting on α.

1. φ[α := >]. We have
φ[α := >] ≡ (> ∨ β) → (> → γ) → (β → γ) → γ

≡ > → γ → (β → γ) → γ

≡ γ → (β → γ) → γ

This is a substitution instance of the known tautology α→ β → α, and so must also be a tautology.
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2. φ[α := ⊥]. We have
φ[α := ⊥] ≡ (⊥ ∨ β) → (⊥ → γ) → (β → γ) → γ

≡ β → > → (β → γ) → γ

≡ β → (β → γ) → γ

This is also a tautology, it’s basically modus ponens expressed as a formula. But for the sake of completeness,
let’s go ahead and show that it’s a tautology by splitting on β. Let ψ = β → (β → γ) → γ

a ψ[β := >].
ψ[β := ⊥] ≡ > → (> → γ) → γ

≡ γ → γ

and γ → γ is a familiar tautology.

b ψ[β := ⊥].
ψ[β := ⊥] ≡ ⊥ → (⊥ → γ) → γ

≡ >

and > is the ultimate tautology.

Exercise 25.2 The formula we just proved, ϕ ≡ (α ∨ β) → (α → γ) → (β → γ) → γ, is also similar to the type of a
Haskell Prelude function. What function is it? Hint: What standard type is most analogous to ∨?

There are a number of standard tautologies which are worth committing to memory:

• The law of the excluded middle: α ∨ ¬α,

• Disjunction elimination: (α ∨ β) → (α→ γ) → (β → γ) → γ,

• Hypothetical syllogism: (α→ β) → (β → γ) → (α→ γ),

• The Sherlock Holmes syllogism: (α ∨ β) → ¬α→ β,

• Reductio ab adsurdum: (α→ ⊥) → ¬α.

Exercise 25.3 Prove the Sherlock Holmes syllogism by Quine’s method.

There is a crucial connection between provability and truth. We write Γ |= α if for all valuations ν, if ν(γ) = > for
all γ ∈ Γ, then ν(α) = > also, i.e., Γ |= α means that whenever the hypotheses are all true, then the conclusion is
also true.

There are two crucial theorems, which together show that provability ` and entailment |= are equivalent:

• The Soundness Theorem: if Γ ` α, then Γ |= α, and

• The Completeness Theorem: if Γ |= α, then Γ ` α.

Proving these theorems is beyond this course (in the sense of subject, not preparation).
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We write α ≡ β, if α and β are semantically equivalent, i.e., if α |= β and β |= α. By the equivalence of |= and `,
this also means that α and β are provably equivalent, and so we’ll often refer to this relation as simply “equivalent”
henceforth.

Theorem (Referential Transparency): If αi ≡ βi, for i ∈ 1, 2, ..., k, then

1. γ[x1 := α1, x2 := α2, ..., xk := αk] ≡ γ[x1 := β1, x2 := β2, ..., xk := βk], and

2. If Γ ` γ, then Γ[x1 := α1, x2 := α2, ..., xk := αk] ` γ[x1 := α1, x2 := α2, ..., xk := αk].

This is often used in the case where Γ is empty, i.e., every substitution instance of a tautology is also a tautology.
We saw this kind of reasoning before when we claimed γ → (β → γ) → γ is a substitution instance of α→ β → α

(which we can now make precise via the substitution [α := γ, β := β → γ]).

This makes our life a lot easier, because it often enables us to work with complicated formulae by replacing various
subformulae with equivalent subformulae.

There are a few equivalences that are crucially important to know, and often get used in applications of referential
transparency.

1. Double negation elimination: α ≡ ¬¬α,

2. de Morgan’s laws:

a α ∨ β ≡ ¬(¬α ∧ ¬β), and

b α ∧ β ≡ ¬(¬α ∨ ¬β);

3. Contraposition: α→ β ≡ ¬β → ¬α, and

4. The definition of implication: α→ β ≡ ¬α ∨ β.
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25.2 Parsing

Propositional logic is an important tool for reasoning about many things, including programs. But our immediate
goal is to write programs that will help us in working with propositional formulae. Haskell is very well suited for
this sort of work. We’ll start by declaring the type of propositional formulae:

module SimpleProposition where

data Proposition
= Var String
| Boolean Bool
| Not Proposition
| And Proposition Proposition
| Or Proposition Proposition
| Implies Proposition Proposition
deriving (Eq,Show)

Our major task for today is write a parser for propositional formulae. To that end, we’ll first deal with the unfortu-
nate fact that the notion system that we’ve been using isn’t especially friendly for keyboard input, so we’re going to
replace the standard logical symbols for propositional connectives with keyboard friendly versions: conjunction/and
(&), disjunction/or (|), implication/implies (->), and negation (!). We’ll also use T for >, and F for ⊥. But, being
defensive programmers, we’ll define variables to hold these values, which makes it easy to change our minds:

impliesT,andT,orT,notT,trueT,falseT :: String
impliesT = "->"
andT = "&"
orT = "|"
notT= "!"
trueT = "T"
falseT = "F"

We’ll start by writing a simple function means :: a -> String -> ReadP a, which associates a value with a
String. The name is chosen because we intend to use it in infix form, e.g., impliesT `means` Implies. We’re
going to want to ignore whitespace, and this functionality is going to be built into token as well:

means :: String -> a -> ReadP a
name `means` meaning = skipSpaces *> string name *> pure meaning

We’ll use this first to define an atomic parser for boolean constants:

parseBool = Boolean <$> (trueT `means` True
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<++ falseT `means` False)

Next, we’ll consider Variable. Here, our representational choices for true and false present us with a minor
conundrum. We could do something like this:

parseVar = skipSpaces
*> (Var <$> ((:) <$> satisfy isLower

<*> munch isAlphaNum))

This, a variable begins with a lower-case letter, followed by zero or more alpha-numerics.

It’s possible to push this further, but it’s hard to argue that doing so improves clarity or efficiency, so we’ll stop here.

Next, it will be useful for having a parser that handles parenthesized expressions: parens :: ReadP a -> ReadP a.
We can define this naïvely via a monadic construct:

parens :: ReadP a -> ReadP a
parens p = do

skipSpaces
char '('
result <- p
skipSpaces
char ')'
pure result

But this involves both monadic code, and some twitchiness around our conventions regarding calls to skipSpaces.
Fortunately, Text.ParserCombinators.ReadP already contains a function that’s perfect for dealing with this issue:

between :: ReadP open -> ReadP close -> ReadP a -> ReadP a

What appears to be an odd order of arguments is actually a setup for an η-reduction, thus

parens :: ReadP a -> ReadP a
parens = between (skipSpaces *> char '(') (skipSpaces *> char ')')

At this point, there are two extremely useful parser combinators that come into play:

chainr1 :: ReadP a -> ReadP (a -> a -> a) -> ReadP a
chainl1 :: ReadP a -> ReadP (a -> a -> a) -> ReadP a
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These are used to parse right- and left-associative operators, where we’re guaranteed that at least one expression is
present. This makes snapping together a precedence-based parser based on binary operations very easy. To that end,
let’s assume that implication is at precedence level 0, conjunction at precedence level 1, disjunction at precendence
level 2, negation at precedence level 3, and the atomic formula at precedence level 4. We can use this to snap together
a precedence-based parser with very little work (not here that we’re punting on negation):

parseProposition :: ReadP Proposition
parseProposition = prec0 where

prec0 = chainr1 prec1 (impliesT `means` Implies)
prec1 = chainl1 prec2 (orT `means` Or)
prec2 = chainl1 prec3 (andT `means` And)
prec3 = prefix prec4 (notT `means` Not)
prec4 = parseVar <++ parens prec0 <++ parseBool

This actually works (at least, on the negation free part of Proposition).

To deal with negation requires only a simple prefix :: ReadP a -> ReadP (a -> a) -> ReadP a function,
which isn’t in Text.ParserCombinator.ReadP. Fortunately, we can write this, but it’s a bit tricky:

prefix :: ReadP a -> ReadP (a -> a) -> ReadP a
prefix p op = p <++ (op <*> prefix p op)

In this, the repetition of prefix p op is undesirable (it result in unnecessary copying), and we can eliminate it with
a recursive definition:

prefix p op = result where
result = p <++ (op <*> result)

For those who like golfing, we can go for the hole-in-one by adding the fixed point combinator fix :: (a -> a) -> a
from Data.Function,

prefix p op = fix $ \result -> p <++ (op <*> result)

But if we do this, the Code Fairy is going to want to eliminate the lambda via η-reduction, resulting in the incom-
prehensibly zen:

prefix p op = fix $ (<++) p . (<*>) op

and that way lies madness. Or your instructors, who at this very moment are contemplating further η-reductions.

Anyway, at this point a bit of gentle packaging and code-reorganization results in
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instance Read Proposition where
readsPrec _ = readP_to_S prec0 where

prec0 = chainr1 prec1 (impliesT `means` Implies)
prec1 = chainl1 prec2 (orT `means` Or)
prec2 = chainl1 prec3 (andT `means` And)
prec3 = prefix prec4 (notT `means` Not)
prec4 = parseVar <++ parens prec0 <++ parseBool
parseVar = skipSpaces

*> (Var <$> ((:) <$> satisfy isLower
<*> munch isAlphaNum))

parseBool = Boolean <$> (trueT `means` True
<++ falseT `means` False)

which is shockingly to the point. It would not be unreasonable to be thinking of the calculator lab at this point, and
certain simplifications that might be made to the code found therein.

Exercise 25.4 Write a small desktop calculator, based the following data type:

data Expression = DoubleValue Double
| Sum Expression Expression
| Difference Expression Expression
| Product Expression Expression
| Quotient Expression Expression

You should process input line-by-line, doing a proper precedence-based parse of each line, an evaluation of the resulting
expression, and print the final result.

Don’t worry about syntax errors, but try to make your calculator program as smooth as possible otherwise. Note also that
you can define the parser directly, so there’s no need for a Proposition-like extra type layer.

Note that generalizing the parsing strategy above requires dealing with multiple operators at the same precedence level,
fortunately with the same associativity. This requires a more complicated ”composing” parser than in the examples above,
e.g.,

prec0 = chainl1 prec1 (token Sum "+" <++ token Difference "-")

At this point, we can test our parser.

We can approach this naively:

> read "a | b -> c -> d & e" :: Proposition
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Implies (Or (Var "a") (Var "b")) (Implies (Var "c") (And (Var "d") (Var "e")))

or

> read "!!!a" :: Proposition
Not (Not (Not (Var "a")))

This is great for reading propositions, but it’s not so great for printing them. We can go with something simple:

instance Show Proposition where
show = showProp where

showProp (Var v) = v
showProp (Boolean True) = "T"
showProp (Boolean False) = "F"
showProp (Not p) = "!" ++ show p
showProp (And p q) = "(" ++ show p ++ " & " ++ show q ++ ")"
showProp (Or p q) = "(" ++ show p ++ " | " ++ show q ++ ")"
showProp (Implies p q) = "(" ++ show p ++ " -> " ++ show q ++ ")"

But the results are unsatisfactory. E.g.,

> read "a | b -> (a -> c) -> (b -> c) -> c" :: Proposition
((a | b) -> ((a -> c) -> ((b -> c) -> c)))

As you can see, too many parentheses detract from readability. To avoid this, we have to go to precedence based
output. The idea here is that we have a precedence context. If we’re in too deep (whatever that means), we need
parentheses, but we get to reset our precedence context.

One nuance here is that we’ll want to have direct access to the precedence level in deciding when to parenthesize,
and so we’ll make the precedence level an argument to a showp function (rather than having a bunch of showpx
functions):

instance Show Proposition where
show = showp (0 :: Int) where

showp _ (Boolean True) = trueT
showp _ (Boolean False) = falseT
showp _ (Var v) = v
showp _ (Not p) = notT ++ showp 3 p
showp i (And s t) =

paren 2 i $ unwords [ showp 2 s, andT, showp 2 t ]
showp i (Or s t) =

paren 1 i $ unwords [ showp 1 s, orT, showp 1 t ]
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showp i (Implies s t) =
paren 0 i $ unwords [ showp 1 s, impliesT, showp 0 t]

paren cutoff precedence str
| precedence > cutoff = "(" ++ str ++ ")"
| otherwise = str

Note here the particular trickiness around the right-associativity of implication.

We can use the parser/formatter pair to do something that is already a bit interesting. Consider norm.hs:

module Main where

import Control.Monad
import System.Environment
import Text.Read
import Proposition

process :: String -> IO ()
process arg = do

case readMaybe arg of
Nothing -> putStrLn $ "Could not parse \'" ++ arg ++ "\'."
Just r -> print (r :: Proposition)

main :: IO ()
main = void $ getArgs >>= traverse process

This simply reads and writes a proposition.

Why is this interesting? Because beginning students are often confused about precedence and associatively, and will
use way more parentheses than are actually necessary, e.g.

$ norm "(a&b) -> (a|b)"
a & b -> a | b
$

Exercise 25.5 Note that the it is not necessarily the case that

(read (show p)) == p

for all propositions p. Why? Does this really matter, and if it doesn’t how might we explain ourselves?

Hint: Consider "a (b | c)”|.
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Code

• Proposition.hs

• Main.hs
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25.3 A Tautology Checker

Propositional logic is an important tool for reasoning about many things, including programs. But our immediate
goal is to write programs that will help us in working with propositional formulae. Haskell is very well suited for
this sort of work. We’ll start by declaring the type of a propositional formula:

data Proposition
= Var String
| Boolean Bool
| Not Proposition
| And Proposition Proposition
| Or Proposition Proposition
| Implies Proposition Proposition

Exercise 25.6 If youwould likemore practice with parsing, work through these Propositional Logic: Parsing (section 25.2).
Below, we will assume the presence of the parser developed there.

Our goal for today is to write a brute-force tautology checker. It greatly simplifies this program to have the following
function-defining function for Proposition, which we’ll add to the Proposition module:

abstractEval :: (Applicative m)
=> (String -> m b) -- ^ Var
-> (Bool -> m b) -- ^ Boolean
-> (b -> b) -- ^ Not
-> (b -> b -> b) -- ^ And
-> (b -> b -> b) -- ^ Or
-> (b -> b -> b) -- ^ Implies
-> Proposition
-> m b

abstractEval varf boolf notf andf orf impliesf = eval where
eval (Var a) = varf a
eval (Boolean b) = boolf b
eval (Not p) = pure notf <*> eval p
eval (And p q) = pure andf <*> eval p <*> eval q
eval (Or p q) = pure orf <*> eval p <*> eval q
eval (Implies p q) = pure impliesf <*> eval p <*> eval q

This looks scary, but it’s actually quite simple, once you get the hang of it: we use abstractEval to define an
evaluator of type Proposition -> m a by providing it with functions for processing variables, boolean constants,
negations, compositions, disjunctions, and implications. We will use abstractEval to implement a couple of
different evaluators in this program, with different evaluation contexts. The generality of this function isn’t just
showing off! We actually need it.

Our tautology checker will work as follows. Given a proposition p, it will:
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1. Compute the set v of variables that occur in p.

2. Generate a list valuations consisting of all possible maps from v to Bool.

3. Evaluate the proposition p at each valuation in turn, producing a list of valuations at which the proposition is
false

4. Generate output, either noting that the formula is a tautology, or providing a refuting refutation.

The first step uses abstractEval to build a function that extracts the set of names of the variables from a Proposition:

variables :: Proposition -> Set String
variables = runIdentity . abstractEval

(Identity . Set.singleton) -- Var
(const (Identity Set.empty)) -- Boolean
id -- Not
Set.union -- And
Set.union -- Or
Set.union -- Implies

A key notion is that of a valuation, i.e., a representation of a function from variables to boolean values. We’ll use
Map String Bool to represent valuations. A key problem is to produce a list of all possible valuations. We started
with code that looked like this:

valuations :: Set String -> [Map String Bool]
valuations = map Map.fromList

. sequence

. map (\v -> [(v,True),(v,False)])

. Set.toList

A key twist in this is the use of sequence, acts on a list of lists by building the Cartesian product of the lists, i.e.,
the list of lists that consist of one element from each of the original lists. It’s remarkable that sequence does this,
but it does.

But our experience with the Foldable and Traversable type classes suggest that the sort of representation swizzling
we’re doing here (visible in the toList and fromList) functions should be unnecessary. This lead to a search for a
better way. A first observation is that sequence has a more general type:

sequence :: (Traversable t, Monad m) => t (m a) -> m (t a)

As [] is both Traversable and a Monad, we can use it as if it’s type were

sequence :: [[a]] -> [[a]]
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But our desired end result has type [Map String Bool]. We can get there via sequence if take an argument of type
Map String [Bool], as [] is a Monad, and Map String is Traversable. This reduces the question (at least, at the
level of types, if not values) to the problem of producing a function of type Set String -> Map String [Bool].
To this end, we can simplify things a bit, using the fact that Map String is a Monoid (its monoidal action is left-biased
union), but that works for us, so we can form a function of the necessary type via

foldMap (\v -> Map.singleton v [True,False])

The code fairy suggests that we replace sequence with sequenceA, which has a more modern type, and that we do
a bit of η-reduction (as usual), giving us

valuations = sequenceA . foldMap (`Map.singleton` [True,False])

This is remarkable! Fully 3/5ths of the list traversing we were doing was unnecessary. As it turns out, this codes is
not only type-correct, it’s value-correct. This does not come as a major surprise.

Next up, we have to evaluate the proposition at each valuation. Fortunately, we have abstractEval ready to serve
us.

eval :: (Map String Bool)
-> Proposition
-> Bool

eval valuation prop = runReader (evalf prop) valuation where
evalf = abstractEval (reader . flip (!)) -- Var

pure -- Boolean
not -- Not
(&&) -- And
(||) -- Or
((||) . not) -- Implies

This takes a bit of work. The local function

evalf :: Proposition -> Reader (Map String Bool) Bool

is key. The abstractEval function has no difficulty working in the context of Reader (Map String Bool), and
most of the code writes itself. The tricky bit is our variable-handling argument to abstractEval. Intuitive, we’ll
need

varf :: String -> Reader (Map String Bool) Bool

This involves lookup up the argument variable in the Reader context, which we can do by the reader function:
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varf v = reader (\r -> r ! v)

Getting from here to

varf = reader . flip (!)

is just standard code fairy η-reduction work, but once we’ve gotten that far, we’ve mooted the need for a local
definition.

There is something mildly suspect about eval. Since it relies on (!), it can throw an exception if the proposition
being evaluated has a variable that’s not included in the valuation. That can’t happen with this program, as we only
call eval with a valuation that was generated from the proposition’s variables, but it’s worth thinking about how
we might generalize eval so that an undefined variable can be handled more gracefully in the code itself, but that’s
a project for another day. But it’s worth noticing that abstractEval sets us up for working with more complex
evaluation contexts (e.g., contexts that handle errors).

Next, we generate a list of exceptional valuations, i.e., valuations for which a given proposition is not true:

refutations :: Proposition -> [Map String Bool]
refutations p =

[ v
| v <- valuations . variables $ p
, not . eval v $ p
]

Finally, there’s the IO code to make it all work. The taut program processes its command line arguments, reading
each as a Proposition, and then reporting whether the resulting Proposition is or is not a tautology. There’s
nothing especially remarkable about the code involved:

process :: String -> IO ()
process arg =

case readMaybe arg of
Nothing -> putStrLn $ "Could not parse \'" ++ arg ++ "\'."
Just p -> case refutations p of

[] -> putStrLn $ show p ++ " is a tautology."
r:_ -> do

putStrLn $ show p ++ " is refutable, cf.,"
void . (`Map.traverseWithKey` r) $ \k v ->

putStrLn $ printf " %s := %s" k (show v)

Briefly, we use Text.Read.readMaybe, which parses in the Maybe context, returning Nothing for unparseable
input. Assuming a successful parse, we then build the list of refutations of the resulting proposition. If that list is
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empty, we have a tautology (and so report), and if it’s non-empty, we have a refutable proposition, and report both
the fact of refutability, and print out a witnessing refutation.

Our main action was originally written as

main :: IO ()
main = do

args <- getArgs
mapM_ processArg args

But again, the code fairy suggests that we should prefer the modern traverse over the legacy mapM, which results
(after further transformations) in

main :: IO ()
main = void $ getArgs >>= traverse process

The void simply throws out the result type, and it’s a useful function to know about, especially to quite warnings
on non-binding lines in a do expression if you compile with -Wall, which is generally recommended.

A sample run looks like this:

$ taut 'a -> a' 'a -> b' '(a -> b) -> (b -> c) -> (a -> c)' 'a ->'
a -> a is a tautology.
a -> b is refutable, cf.,
a := True
b := False

(a -> b) -> (b -> c) -> a -> c is a tautology.
Could not parse 'a ->'.

On one hand, this is a fairly useful little program, but on another, it’s a bit unsatisfying. If we process a refutable
proposition, we’re given a refuting valuation. But if the proposition is a tautology, all we get is a bare assertion that
this is so. If we want to do more, we’ll have to work harder.

Code

• Proposition.hs

• Main.hs
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25.4 A Quine’s Method Theorem Prover

Our goal for today is ambitious. We will write a program that will take as input a series of propositions (intended to
be tautologies, but checked as such), and will produce a web page that consists of a series of Quine-style proofs, using
the mathematical typesetting language TeX (strictly speaking, LaTeX) to render boolean formulae in a attractive way.
I.e., we’ll take input file that looks like this:

a -> a
a -> b -> a
a -> (a -> b) -> b

and produce web content that looks like this:

Propositional Tautologies

Proposition 1: α→ α Quine Alternatives:

• α→ α [α := >] Simplification

– > → >

– >

Reduced to >.

• α→ α [α := ⊥] Simplification

– ⊥ → ⊥

– >

Reduced to >.

� Proposition 1 Proposition 2: α→ β → α Quine Alternatives:

• α→ β → α [α := >] Simplification

– > → β → >

– β → >

– >

Reduced to >.

• α→ β → α [α := ⊥] Simplification

– ⊥ → β → ⊥

– >
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Reduced to >.

� Proposition 2 Proposition 3: α→ (α→ β) → β Quine Alternatives:

• α→ (α→ β) → β [α := >]

– > → (> → β) → β

– (> → β) → β

– β → β

Substitution instance of Proposition 1[α→ α] at

– α := β

• α→ (α→ β) → β [α := ⊥] Simplification

– ⊥ → (⊥ → β) → β

– >

Reduced to >.

� Proposition 3

There are a lot of moving parts here!

Quine’s method

Let’s remember the basics of Quine’s method. Given a proposition p, we simplify p, i.e., we produce a new propo-
sition p' which logically equivalent to p, such that p' is either:

• Boolean True, in which case it is a tautology,

• Boolean False, in which case it is refutable, i.e., not a tautology, or

• there are no Boolean nodes remaining, in which case we

1. select a variable v which occurs in p.

2. create two new propositions pt and pf, by substituting Boolean True and Boolean False for v in
the original proposition. Then p is a tautology if and only if both pt and pf are.

We’ll start with code for simplifying a proposition:

simplify :: Proposition -> Proposition
simplify = simpleEval Var Boolean notf andf orf impliesf where

notf p = case p of
Boolean b -> Boolean (not b)
Not p' -> p' -- eliminate double negations
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_ -> Not p
andf p q = case (p,q) of

(Boolean True,_) -> q
(Boolean False,_) -> Boolean False
(_,Boolean True) -> p
(_,Boolean False) -> Boolean False
_ -> And p q

orf p q = case (p,q) of
(Boolean True,_) -> Boolean True
(Boolean False,_) -> q
(_,Boolean True) -> Boolean True
(_,Boolean False) -> p
_ -> Or p q

impliesf p q = case (p,q) of
(Boolean True,_) -> q
(Boolean False,_) -> Boolean True
(_,Boolean True) -> Boolean True
(_,Boolean False) -> Not p
_ -> Implies p q

Much of the heavy lifting is done by simpleEval, which essentially eliminates the contextualizing type constructor
of the last lecture’s abstractEval.

The simplify function can be thought of as a partial-evaluator, i.e., it takes an existing expression, and partially
evaluates it, resulting in a simpler expression that can be used more efficiently in lieu of the original in subsequent
processing. Partial evaluators are important in many optimizations, and one of the nice things about Haskell is that
it often makes writing partial evaluators easy, as it does here.

Next up, we have the job of creating substitution instances of our proposition, in which the selected variable is set
to True and False respectively. First, we’ll write a general purpose substitution routine:

type Substitution = Map String Proposition

substitute :: Substitution -> Proposition -> Proposition
substitute sub = simpleEval varf Boolean Not And Or Implies where

varf v = Map.findWithDefault (Var v) v sub

The idea here is that substitution includes as keys only the names of variables that we’re substituting out, so a
missing key simply means a variable that we’re not changing.

Our first cut at our theorem prover uses a simple type for representing a quine-style proof:

data QuineProof
= Split

Proposition -- ^ the proposition to be proven
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String -- ^ the name of the variable to split on
QuineProof -- ^ case where the split variable is True
QuineProof -- ^ case where the split variable is False

| Trivial
deriving (Show)

type Analysis = Maybe QuineProof

This will get more sophisticated, but it’s a start. With this, we can do our first pass at our quine theorem prover.

analyze :: Proposition -> Analysis
analyze prop = case simplify prop of

Boolean True -> pure Trivial
Boolean False -> Nothing
q -> Split q v <$> branch True <*> branch False where

v = elemAt 0 . variables $ q
branch b = analyze (substitute (Map.singleton v (Boolean b)) q)

This is just a simple realization ofQuine’s algorithm. <!–Note that at this point in the code, variables :: Proposition -> [String].
–> We will get more sophisticated soon. This code is good enough to to find our our bearings, but a little bit of
exploration reveals a need to do more work:

> let runQuine = quine . read
> runQuine "a -> a"
Just (Split a -> a "a" Trivial Trivial)
> runQuine "a -> b"
Nothing
> runQuine "a | b -> (a -> c) -> (b -> c) -> c"
Just (Split a | b -> (a -> c) -> (b -> c) -> c "a" (Split c -> (b -> c) -> c "b" (Split c -> c -> c "c" Trivial Trivial) (Split c -> c "c" Trivial Trivial)) (Split b -> (b -> c) -> c "b" (Split c -> c "c" Trivial Trivial) Trivial))

We’re getting proofs out, and it’s worth understanding that first.

Let’s consider the analysis of a -> a, a familiar tautology. It doesn’t simplify to a Boolean True, but rather to
itself. We split on "a", and substitute in Boolean True and Boolean False for Var "a" in the true and false
branches of the proof, in both cases resulting in formula that simplify to Boolean True, and so have trivial proofs.

Next, we have a -> b, which isn’t a tautology. Since the formula is refutable, we return Nothing, as there is no
Quine proof to return.

Finally, we have the analysis of a b -> (a -> c) -> (b -> c) -> c|. The proof that was returned isn’t that easy to read,
so it’s helpful to format it a bit differently (note that this isn’t valid Haskell)

Split
a | b -> (a -> c) -> (b -> c) -> c

248



"a"
Split c -> (b -> c) -> c

"b"
Split c -> c -> c "c" Trivial Trivial
Split c -> c "c" Trivial Trivial

Split b -> (b -> c) -> c
"b"
Split c -> c "c" Trivial Trivial
Trivial

We see that the analysis of the original formula results in a splitting on Var "a", resulting in two formula that
simplify to c -> (b -> c) -> c and b -> (b -> c) -> c respectively. The analysis of the first of these does a
split on Var "b", which is unfortunate, because a split on Var "c" would result in trivial instances. Likewise, the
analysis of b -> (b -> c) -> c splits on Var "b", resulting in a non-trivial branch, whereas a split on Var "c"
instead would have resulting in two trivial branches.

So it’s a start, but there’s a lot to be unhappy with if this particular theorem prover is to live up to its potential:

• The simplification process is abrupt. We only get to see the beginning and ending steps of the simplifica-
tions, and simplification is a nontrivial process. It would be helpful to illustrate a step-by-step sequence of
simplifications.

• Our goal is to give a result that is human checkable, but we fail badly in the case of a refutable statement. Our
prover is just returning the fact of refutability, rather than an explanation. Our brute-force tautology prover
did better, and we should too.

• Our theorem prover forces us to pursue the process of splitting a formula all the way down to success
(Boolean True) or failure (Boolean False). We can give more concise proofs by recognizing when we’ve
reduced a formula to a (substitution instance of) a known tautology, and quit there.

• The proofs we’re producing aren’t particularly economical. If our goal is human readability, we should value
concision, even at the cost of much more computation.

• The result we return is unnecessarily opaque. Accepting the default formatting of the result isn’t a particularly
friendly thing to do. We should format the final result better.

These changes involve a certain amount of additional book-keeping, and the difficulty of doing so isn’t to be slighted.
But the more essential difficulties are in writing the step-by-step simplifier and the instance checker.

We’ll start with the step-by-step simplifier:

simplifyInSteps :: Proposition -> [Proposition]
simplifyInSteps = converge step where

converge f = untilFixed . iterate f where
untilFixed (p:qs@(q:_))

| p == q = [p]
| otherwise = p : untilFixed qs
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untilFixed _ = error "untilFixed: impossible error"
step prop = case prop of

v@(Var _) -> v
b@(Boolean _) -> b
Not p -> case p of

Boolean b -> Boolean (not b)
Not p' -> p'
_ -> Not $ step p

And p q -> case (p,q) of
(Boolean True,_) -> q
(Boolean False,_) -> Boolean False
(_,Boolean True) -> p
(_,Boolean False) -> Boolean False
_ -> And (step p) (step q)

Or p q -> case (p,q) of
(Boolean True,_) -> Boolean True
(Boolean False,_) -> q
(_,Boolean True) -> Boolean True
(_,Boolean False) -> p
_ -> Or (step p) (step q)

Implies p q -> case (p,q) of
(Boolean True,_) -> q
(Boolean False,_) -> Boolean True
(_,Boolean True) -> Boolean True
(_,Boolean False) -> Not p
_ -> Implies (step p) (step q)

This isn’t a perfect solution to the simplify-in-steps problem (it may make multiple simplifications, but at least they’ll
be in distinct parts of the expression), but it’s a bit of improvement for now. The key is the local step function,
which only calls itself recursively in the cases where it can’t make progress otherwise. This is driven by converge,
which iterates step until it reaches a fixed point.

We now can tackle the issue of getting simplification steps into our proofs, bymodifying the definition of QuineProof
so that it includes the simplification steps, and not just the final result of simplification.

data QuineProof
= Split

[Proposition] -- ^ simplifications
String -- ^ variable to split on
QuineProof -- ^ case where split variable is true
QuineProof -- ^ case where split variable is false

| Trivial
[Proposition] -- ^ simplifications

Because refutations are also more complex, we replace the use of the Maybe type with a type that can carry a value
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in the failure case:

data Refutation = Refutation (Map String Bool)

type Analysis = Either Refutation QuineProof

But we’re not done yet. We want to handle a sequence of propositions, as logic texts invariably do, precisely so
that we can make our proofs ”shallower,” by cutting off our Quine-style proofs when we get a formula that’s a
substitution instance of an earlier formula. This results in an appreciably more complex type for our :

type Heuristic = Proposition -> Maybe String

analyzeWithHeuristic
:: Heuristic -- variable selection heuristic
-> [(Int,Proposition)] -- list of indexed tautologies
-> Proposition -- the Proposition to analyze
-> Analysis

There are a couple of twists here. The Heuristic type is used to pick a variable for splitting on. We allow a
Heuristic to return Nothing if its argument contains no variables. The second argument to analyzeWithHeuristic
is a list of tautologies (already proven), paired with an Int which identifies the proposition which established it.

To determine whether or not a Proposition is a substitution instance of a given propositional formula, we use

instanceOf :: Proposition -> Proposition -> Maybe Substitution
instanceOf target pattern = case (target,pattern) of

(t, Var v) -> Just $ Map.singleton v t
(Boolean t,Boolean p) -> guard (t == p) >> pure Map.empty
(Not t, Not p) -> instanceOf t p
(And t1 t2, And p1 p2) -> process t1 t2 p1 p2
(Or t1 t2, Or p1 p2) -> process t1 t2 p1 p2
(Implies t1 t2, Implies p1 p2) -> process t1 t2 p1 p2
_ -> Nothing
where

process t1 t2 p1 p2 = do
m1 <- instanceOf t1 p1
m2 <- instanceOf t2 p2
if m1 `Map.intersection` m2 == m2 `Map.intersection` m1

then pure $ Map.union m1 m2
else Nothing

This tries to build substitutions, but the trickiness comes from combining them. We do this fairly simply, by relying
on the left-bias of Map operators, in this case intersection, to insure that in the case we have to follow two
branches, that we derive identical substitutions or fail.
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There are a fair number of details being swept under the rug here, which you can find out by reading the code.

Producing HTML

The output side of this program will use Text.Blaze.Html5 and related modules to render HTML. We’ll pass over
the specifics of generating TeX—as they’re not all that different from generating the kind of text-based output we’ve
used so far.

A key output handling procedure is

renderProof ix prop proof = do
h2 $ "Proposition " >> toHtml ix >> ": " >> toHtml' prop
format proof
p ! class_ "box" $

"$\\Box$ Proposition " >> toHtml ix
where
format prf = case prf of

Split props var trueb falseb -> do
when (length props > 1) $ do

p "Simplification"
ul . void $ traverse (li . toHtml') props

let prop' = last props
p "Quine Alternatives:"
ul $ do

li $ showBranch prop' var True trueb
li $ showBranch prop' var False falseb

Trivial props -> do
p "Simplification"
ul . void $ traverse (li . toHtml') props
p $ "Reduced to " >> toHtml' (Boolean True) >> "."

Reference props citation pattern bindings -> do
ul . void . traverse (li . toHtml') $ props
p $ "Substitution instance of Proposition "

>> toHtml citation
>> "$[" >> toTeX pattern >> "]$ at"

ul . void . flip Map.traverseWithKey bindings
$ \k v -> li $ "$" >> greekDict Map.! k >> " := "

>> toTeX v >> "$"
showBranch prop' var bool branch = p $ do

toHtml' prop' >> " $[" >> greekDict Map.! var >> ":="
>> boolDict Map.! bool >> "]$"

format branch

Note here the additional Reference case to QuineProof. This is a fairly straightforward recursive processing of
a proof tree, in as much as the structure of QuineProof type is mirrored in the structure of the resulting HTML.
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There are a couple of things to notice here. We have the {-# LANGUAGE OverloadedStrings #-} pragma
on, which allows literal strings in the source to be interpreted via the IsString type class, which implements a
fromString :: String -> a function, similar to fromInt. There’s also the toHtml' function, which parallels
Blaze’s toHtml, but is specific to the Proposition type (a minor work-around necessary to avoid a orphaned
instance warning).

The Full Program

• Main.hs

• Proposition.hs

• Quine.hs

• QuineHtml.hs
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https://github.com/UChicago-PL/a-quarter-of-haskell/blob/main/code/propositional-logic-quine-prover/Main.hs
https://github.com/UChicago-PL/a-quarter-of-haskell/blob/main/code/propositional-logic-quine-prover/Proposition.hs
https://github.com/UChicago-PL/a-quarter-of-haskell/blob/main/code/propositional-logic-quine-prover/Quine.hs
https://github.com/UChicago-PL/a-quarter-of-haskell/blob/main/code/propositional-logic-quine-prover/QuineHtml.hs
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