
Functional
Programming

Ravi Chugh
UChicago CS 223

Fall 2023

Overview: Monoid, Foldable, Traversable

foldr (++) "" ["223","00"] :: [Char]

foldr (+) 0 [2,2,3,0,0] :: Int
foldr (*) 1 [2,2,3,0,0] :: Int

foldr (||) False [True, True, False] :: Bool
foldr (&&) True [True, True, False] :: Bool

foldr firstJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int
 ⇒ Just 2

foldr lastJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int
 ⇒ Just 23

foldr plusJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int
 ⇒ Just 25

foldr multJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int
 ⇒ Just 46

foldr (++) "" ["223","00"] :: [Char]

foldr (+) 0 [2,2,3,0,0] :: Int
foldr (*) 1 [2,2,3,0,0] :: Int

foldr (||) False [True, True, False] :: Bool
foldr (&&) True [True, True, False] :: Bool

foldr firstJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int

foldr lastJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int

foldr plusJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int

foldr multJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int

Semigroup t => Monoid t
• One instance per type,

so wrapper types

 foldr (+) 0 ([2,2,3,0,0] :: [] Int)
 foldr (+) 0 (("CMSC", 223) :: (,) String Int)
 foldr (+) 0 ((Right 223) :: Either a Int)

 foldr (+) 0 ([2,2,3,0,0] :: [] Int)
 foldr (+) 0 (("CMSC", 223) :: (,) String Int)
 foldr (+) 0 ((Right 223) :: Either a Int)

Foldable t

foldr :: (a -> b -> b) -> b -> t a -> b
 foldl :: (b -> a -> b) -> b -> t a -> b
 fold :: Monoid m => t m -> m
 foldMap :: Monoid m => (a -> m) -> t a -> m

 elem :: Eq a => a -> t a -> Bool
(concat :: t [a] -> [a])

 ...

sequenceListOfMaybes :: [Maybe a] -> Maybe [a]

sequenceListOfMaybes :: [] (Maybe a) -> Maybe ([] a)
sequenceListOfTrees :: [] (Tree a) -> Tree ([] a)
sequenceTreeOfMaybes :: Tree (Maybe a) -> Maybe (Tree a)

 t_outer (t_inner a) t_inner (t_outer a)

Traversable t_outer

sequenceA :: Applicative t_inner =>
 t_outer (t_inner a) -> t_inner (t_outer a)

traverse :: Applicative t_inner =>
 (a -> t_inner b) -> t_outer a -> t_inner (t_outer b)

• traverse is “effectful fmap”
• Traversable simultaneously generalizes Functor and Foldable

