Functional
Programming

Ravi Chugh

UChicago CS 223
Fall 2023

5/)
java g
} sminj "\
mocaml ’Scala
»-Haskell
\LiquidHaskell ﬁ

The
Warming
Climate*

*An incomplete and unscientific account

Mrogramming in Haskell

Algebraic Datatypes
"‘5 ,|‘ Higher-Order Functions
E 4 oo Separation of Church and State #
B s . o Alan Turing
Haskell Curry Syntactlc COnCISlon Turingggsc):hines

Combinatory logic
(1920s-30s)

Lazy Evaluation

CAUTION
VERY HOTWATER

TYPE SYSTEM

A Silly Little I/O Loop

stdout

Tell me a nice number: Haskell, woohoo!!!
Hmm, that doesn't seem like a number.
Tell me a nice number: CMSC 22300

Hmm, that doesn't seem like a number.
Tell me a nice number: cs223

Hmm, that doesn't seem like a number.
Tell me a nice number: 223

Yes, 223 is a nice number.

Tell me a nice number: -223

Yes, -223 is a nice number.

Tell me a nice number:

main :: IO ()
main =
do
putStr "Tell me a nice number:
S <- getlLine
let 1 = read s :: Int
putStrLn ("Yes, " ++ show i ++
main

is a nice number.")

main
main
do

I0 ()

putStr "Tell me a nice number:
s <- getlLine

let i = read s :: Int

putStrLn ("Yes, " ++ show i ++
main

is a nice number.")

\%¢

main
main
do

I0 ()

putStr "Tell me a nice number:
s <- getlLine
if all isDigit s then
let i = read s :: Int in
putStrLn ("Yes, " ++ show i ++
else
putStrLn "Hmm, that doesn't seem like a number."
main

is a nice number.")

V1

main
main
do

I0 ()

putStr "Tell me a nice number:
s <- getlLine
if all isDigit s then
let i = read s :: Int in
putStrLn ("Yes, " ++ show i ++
else
putStrLn "Hmm, that doesn't seem like a number."
main

is a nice number.")

V1

main :: IO ()
main =
do
putStr "Tell me a nice number:
s <- getlLine
let i = readInt s
if i /= -9999999999999
then putStrLn ("Yes, " ++ show i ++ " is a nice number.")
else putStrLn "Hmm, that doesn't seem like a number."
main

readInt :: String -> Int
readInt s =
if all isDigit s then
read s
else
-9999999999999

V2

main :: IO ()
main =
do
putStr "Tell me a nice number:
s <- getlLine
let i = readInt s
if i /= -9999999999999
then putStrLn ("Yes, " ++ show i ++ " is a nice number.")
else putStrLn "Hmm, that doesn't seem like a number."
main

readInt :: String -> Int
readInt s =
if all isDigit s then
read s
else
-9999999999999

V2

case readMaybelInt s of
Just 1 ->
Nothing ->

Maybe Maybe
Maybe
Just

Nothing

Algebraic Datatypes (ADTs)
and Pattern Matching

case readMaybeInt s of
Just i -> "Yes, ++ show i ++ is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

(response s)

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

main :: IO ()
main =
do
putStr "Tell me a nice number:
s <- getlLine
putStrLn (response s)
main

response :: String -> String
response s =
case readMaybelInt s of
Just i -> "Yes, " ++ show 1 ++ is a nice number."”
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt s =
if all isDigit s then
Just (read s)
else
Nothing

v4

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> I0 ()
loop prompt f =
do

putStr prompt

Higher-Order Functions
S <- getlLine

putStrLn (f s)
loop prompt f

main :: I0 () Effectful Code

“State”

loop :: String -> (String -> String) -> I0 ()

“Church”

response :: String -> String Pure Functions

/

readMaybeInt :: String -> Maybe Int

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> I0 ()
loop prompt f =
do
putStr prompt
s <- getlLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show 1 ++
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt s =
if all isDigit s then
Just (read s)
else
Nothing

is a nice number."

V5

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> I0 ()
loop prompt f =
do
putStr prompt
s <- getlLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybelInt s of
Just i -> "Yes, " ++ show 1 ++ is a nice number.'
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = case readMaybelnt s of
Just i -> Just (-1 * 1)
Nothing -> Nothing
readMaybelInt s = if all isDigit s
then Just (read s)

else Nothing

vb

main :: IO ()
main =

loop "Tell me a nice number: response

loop :: String -> (String -> String) -> I0 ()

loop prompt f =
do
putStr prompt
s <- getlLine
putStrLn (f s)
loop prompt f

response :: String -> String

response s =

case readMaybelInt s of

Just 1 -> "Yes,

++ show 1 ++ is a nice number.'

Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String

readMaybelnt
readMaybeInt ('-':s)

readMaybelInt s

-> Maybe Int
Nothing
case readMaybeInt s of
Just i -> Just (-1 * 1)
Nothing -> Nothing
if all isDigit s
then Just (read s)
else Nothing

vb

Maybe Int

do

i <- readMaybelInt s;
return (-1 * i);
do

“Programmable
Semicolons”’

guard (all isDigit s);
return (read s) ;

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> I0 ()
loop prompt f =
do
putStr prompt
s <- getlLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybelInt s of
Just i -> "Yes, " ++ show 1 ++
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" Nothing
readMaybeInt ('-':s) = do
i <- readMaybelnt s
return (-1 * i)
readMaybeInt s = do
guard (all isDigit s)
return (read s)

is a nice number."

V7

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> I0 ()
loop prompt f =
do
putStr prompt
s <- getlLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show 1 ++ is a nice number.
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int

readMaybeInt = Nothing

readMaybeInt ('-':s) = (\i -> -1 * i) <$> readMaybelnt s
readMaybeInt s = guard (all isDigit s) >> return (read s)

v8

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> I0 ()
loop prompt f =
do
putStr prompt
s <- getlLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybelInt s of
Just i -> "Yes, " ++ show 1 ++ is a nice number."”
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int

readMaybeInt "" Nothing

readMaybeInt ('-':s) ((-1)*) <$> readMaybelnt s

readMaybeInt s isDigit s) >> return (read s)

1l
0Q
c
(4]
)
Q.
~
Q)

Operator Overloading++

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getlLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybelInt s of
Just i -> "Yes, " ++ show 1 ++
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int

readMaybeInt "" Nothing

readMaybeInt ('-':s) ((-1)*) <$> readMaybelnt s
readMaybeInt s

is a nice number."

guard (all isDigit s) >> return (read s)

V9

main :: IO ()
main =

loop "Tell me a nice number: response

loop :: String -> (String -> String) -> IO ()

loop prompt f =
do
putStr prompt

putStrLn =<< f <$> getlLine

loop prompt f

response :: String -> String

response s =

case readMaybelInt s of

Just 1 -> "Yes,

++ show i1 ++ " is a nice number.'

Nothing -> "Hmm, that doesn’'t seem like a number."

readMaybeInt :: String -> Maybe Int

readMaybelInt
readMaybeInt ('-':s)
readMaybeInt s

Nothing
((-1)*) <$> readMaybeInt s
guard (all isbigit s) >> return (read s)

V10

main :: IO ()
main =

loop "Tell me a nice number: response

loop :: String -> (String -> String) -> I0 ()

loop prompt f =
do
putStr prompt

putStrLn =<< f <$> getlLine

loop prompt f

response :: String -> String

response s =

case readMaybeInt s of

Just 1 -> "Yes,

++ show 1 ++ " is a nice number.'

Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int

readMaybeInt
readMaybeInt ('-':s)
readMaybeInt s

Nothing
((-1)*) <$> readMaybeInt s
guard (all isDigit s) >> return (read s)

import Data.Char
import Control.Monad

main :: IO ()
main =

loop "Tell me a nice number: response

loop :: String -> (String -> String) -> I0 ()

loop prompt f =
do
putStr prompt

putStrLn =<< f <$> getlLine

loop prompt f

response :: String -> String

response s =

case readMaybeInt s of

Just 1 -> "Yes,

++ show 1 ++ is a nice number.'

Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int

readMaybeInt
readMaybeInt ('-':s)
readMaybeInt s

Nothing
((-1)*) <$> readMaybeInt s
guard (all isDigit s) >> return (read s)

Mrogramming in Haskell

Primary Big Ideas

Algebraic Datatypes
Higher-Order Functions

Separation of Church and State @

Secondary

Syntactic Concision
(double-edged sword)

Lazy Evaluation
(ditto)

Separation of Church and State

Erecting the Wall
of Separation Between
Church and State

is Absolutely Essential

in a Free Society.
- Thomas Jefferson, 1808

Separation of Church and State

Erecting the Wall
of Separation Between

Church and State
is Absolutely Essential

in a Functional Program.
- Every ‘Functional Programmer, Abways

Disclaimer: This is not an authentic quote from Phil Wadler
https://www.google.com/search?qg=phil+wadler+lambda&tbm=isch
https://twitter.com/jeangasaur/status/1201412242119356416

https://www.google.com/search?q=phil+wadler+lambda&tbm=isch
https://twitter.com/jeanqasaur/status/1201412242119356416

KEEP
CALM

KEEP |..=2%y
CALM

KeepCalmAndPosters.com

AND

DO
ASKELL

KeepCalmAndPosters.com

https://www.keepcalmandposters.com/poster/1359123 keep calm and do haskell
https://www.keepcalmandposters.com/poster/5812159 keep calm and learn haskell
https://www.zazzle.com/keep calm and curry on poster-228123322001929170

https://www.keepcalmandposters.com/poster/1359123_keep_calm_and_do_haskell
https://www.keepcalmandposters.com/poster/5812159_keep_calm_and_learn_haskell
https://www.zazzle.com/keep_calm_and_curry_on_poster-228123322001929170

