

Qubits: Mathematical Notation

Outline

Bra-ket Notation

Vector Notation

Single-Qubit Calculations (matrix multiplication)

Multi-Qubit Calculations (single - double qubit notation)

Decomposing the Classical Computer

Everything is stored as a number in a variable:

- Each *letter* of this sentence (s is 115, S is 83)
- The color of the font of this sentence
- The number of slides in this presentation
- The images included in this presentation (lots and lots of numbers)
- Sounds from an audio file

Decomposing the Classical Computer

Every number is stored in binary:

- A binary digit holds a 1 or a 0 (at any given time)
- A binary digit is called a **bit**
- 4 bits is a nibble, 8 bits is a byte

Programming languages can hide these details, providing a more intuitive programming model

Decomposing the Quantum Computer

Classical bit:

- 0 or 1

Quantum bit (qubit):

- $|0\rangle$, $|1\rangle$, or $|0\rangle$ and $|1\rangle$ (some probability of measuring 0 or 1)
- Phase: positive (+) or negative (-)
-and more (but this is all we'll cover)

Composing Computers from (Qu)bits

Classical variable:

Group of n bits stores one of 2^n possible values

Quantum variable:

Group of n qubits stores up to 2^n possible values, with a distinct probability of measuring each individual value

This means, if I set up uneven probabilities for measuring different values, I could use it to give a little spice / uncertainty to:

- The next slide (by slide number)
- The next letter or word that appears or the font used

Mathematical Model

Figure out **existing mathematical symbols and operations** that will result in **efficient, accurate calculations** that match observed results.

5 in binary: 0b00000101

-5 in binary: 0b10000101 or 0b11111011

The former is easier for seeing the state; the latter is faster for computer computation (addition, subtraction, multiplication, division).

Quantum:

Store probabilities

Express three different attributes (0 vs 1, two forms of phase)

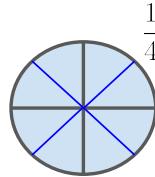
Efficient calculations

Fraction Operations

You have a pie to share with three friends. You cut it into 4 equal pieces, each of size $\frac{1}{4}$.

Your friend exclaims, "Just because there are four of us, it doesn't mean we need to eat the whole pie! I only want $\frac{1}{2}$ that much!"

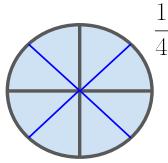
How much of the pie will you give your friend?



$$\frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$

Representations of fractions

Fraction Operations



When in doubt of the mathematics, check your work using simple examples that you can figure out with drawings!

$$\frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$

$$\frac{1}{4} \times \frac{1}{2} = \frac{(1 \times 1)}{(4 \times 2)} = \frac{1}{8}$$

BUT...

$$\frac{1}{4} + \frac{1}{2} = \frac{1}{4} + \frac{2}{4} = \frac{(1 + 2)}{4} = \frac{3}{4}$$

Step 1: Figure out what the *real* operation does

Step 2: Figure out the mathematics that *always* results in the same answer

The mathematics does not always make sense on its own.

2-bit Quantum Mathematical Model

Store probabilities:

% <00>, % <01>, % <10>, % <11>

Express three independent attributes

% <00>, % <01>, % <10>, % <11>

% <++>, % <+->, % <-+>, % <-->

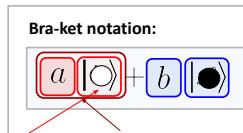
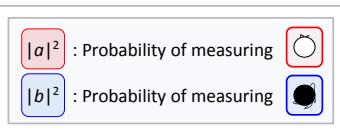
% <aa>, % <ab>, % <ba>, % <bb>

Compact and efficient for storage and computation (next slide)

9

Quantum State: Bra-ket Notation

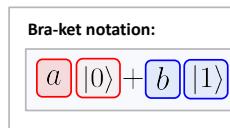
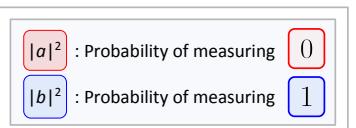
Expresses **probability of measuring** each of the possible states.



Constrained by the equation: $|a|^2 + |b|^2 = 1$

Quantum State: Bra-ket Notation

Expresses **probability of measuring** 0 or 1, and indicates phase (+/-).



Constrained by the equation: $|a|^2 + |b|^2 = 1$

Bra-ket notation also indicates phase (+/-).

Don't confuse numbers **inside** brackets with numbers **before** brackets

11

12

Let's relate this to the balls....

$ 0\rangle$	Probability of measuring 0: 100% Phase : Positive (+) Quantum State : $ 1\rangle 0\rangle + 0\rangle 1\rangle$
$ 1\rangle$	Probability of measuring 0: 0% Phase : Positive (+) Quantum State : $ 0\rangle 0\rangle + 1\rangle 1\rangle$
$ 0\rangle 1\rangle$	Probability of measuring 0: 50% Phase : Positive (+) Quantum State : $\frac{1}{\sqrt{2}} 0\rangle 0\rangle + \frac{1}{\sqrt{2}} 1\rangle 1\rangle$
$ 1\rangle 0\rangle$	Probability of measuring 0: 50% Phase : Negative (-) Quantum State : $\frac{1}{\sqrt{2}} 0\rangle 0\rangle - \frac{1}{\sqrt{2}} 1\rangle 1\rangle$

Let's relate this to the balls....

$ 0\rangle 1\rangle$	$ \psi\rangle = \frac{1}{\sqrt{4}} 0\rangle + \frac{\sqrt{3}}{\sqrt{4}} 1\rangle$ 25% $\left(\frac{1}{4}\right)$ probability of measuring 0 75% $\left(\frac{3}{4}\right)$ probability of measuring 1
$ 1\rangle 0\rangle$	$ a ^2 = \left(\frac{1}{\sqrt{4}}\right)^2 = \frac{1}{4}$ $ b ^2 = \left(\frac{\sqrt{3}}{\sqrt{4}}\right)^2 = \frac{3}{4}$
Probability of measuring 0 : $\frac{1}{4}$ ($\approx 25\%$)	Probability of measuring 1 : $\frac{3}{4}$ ($\approx 75\%$)

13

14

Bra-ket algebra

Like algebra, quantum notation uses conventions to improve readability.

Quantum notation simplifies in the same way as algebraic expressions.

$$z = 15 = \underbrace{1x + 0y}_{15 = 1x + \cancel{0y}} \quad |\psi\rangle = 1|0\rangle + 0|1\rangle \quad |\psi\rangle = |0\rangle$$

$x = 15$

Another convention is to factor out equivalent constants; I do not do this in class.

$$\cancel{\frac{1}{2}}|0\rangle + \cancel{\frac{1}{2}}|1\rangle = |0\rangle + |1\rangle$$

Outline

Bra-ket Notation

Vector Notation

Single-Qubit Calculations (matrix multiplication)

Multi-Qubit Calculations (single - double qubit notation)

15

Quantum State: Vector Notation

Makes calculations of gate operations easier

Bra-ket notation:	$a 0\rangle + b 1\rangle$
Vector notation:	$\begin{bmatrix} a \\ b \end{bmatrix}$

Vector notation:

Makes calculations of gate operations easier

$a 0\rangle + b 1\rangle$	$\frac{1}{\sqrt{2}} 0\rangle + \frac{1}{\sqrt{2}} 1\rangle$	$\frac{1}{2} 0\rangle + \frac{\sqrt{3}}{2} 1\rangle$	$\frac{1}{2} 1\rangle + \frac{\sqrt{3}}{2} 0\rangle$
$\begin{bmatrix} a \\ b \end{bmatrix}$	$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$	$\begin{bmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$

17

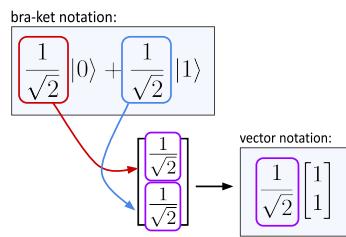
18

Vector notation of Quantum State:

Algebra-like simplification

Convert bra-ket notation to vector notation.

Simplify by factoring out any common constants.



Outline

Bra-ket Notation

Vector Notation

Single-Qubit Calculations (matrix multiplication)

Multi-Qubit Calculations (single - double qubit notation)

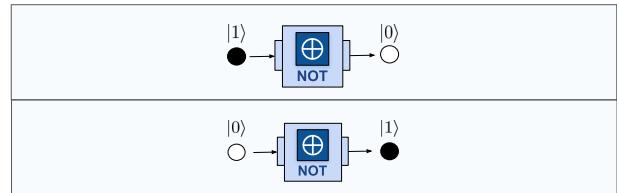
19

Fraction Operations: Addition & Multiplication

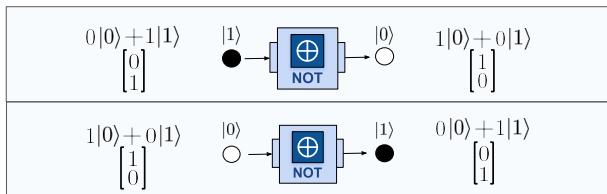
Addition with same denominators: $\frac{a}{x} + \frac{b}{x} = \frac{a+b}{x}$	Example: $\frac{1}{5} + \frac{3}{5} = \frac{1+3}{5} = \frac{4}{5}$
Addition with different denominators: $\frac{a}{x} + \frac{b}{y} = \frac{ay+bx}{xy}$	Example: $\frac{1}{3} + \frac{1}{5} = \frac{(1 \times 5) + (1 \times 3)}{(3 \times 5)} = \frac{5+3}{15} = \frac{8}{15}$
Multiplication: $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	Example: $\frac{1}{2} \times \frac{3}{4} = \frac{1 \times 3}{2 \times 4} = \frac{3}{8}$

Have you noticed how much easier fraction multiplication is than fraction addition?

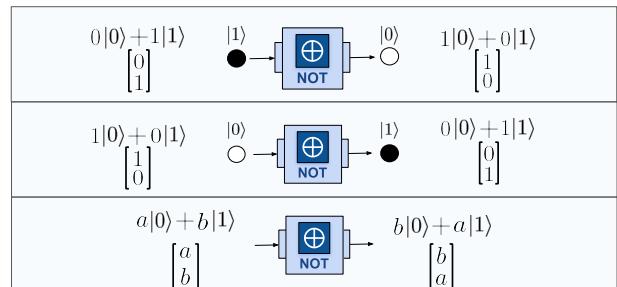
We want a mathematical calculation for....



Let's revisit ways to represent qubits



We want a mathematical calculation for ANY input

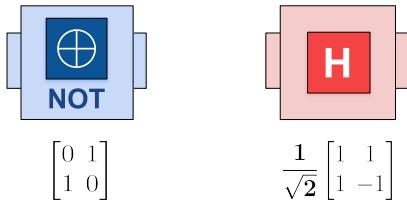


Need a similar method for all quantum gates

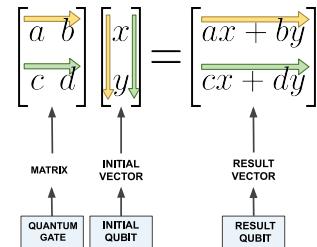
	Assignment 0	Assignment 1	Assignment 2	Assignment 3	Assignment 4
Student A	95	86	93	89	91
Student B	73	82	89	75	63
Student C	97	93	94	97	91
Student D	85	82	87	91	93

Matrix Representation

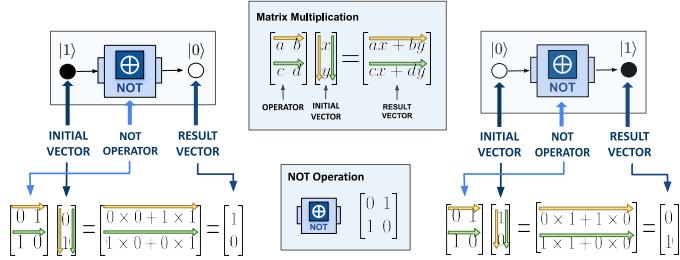
Quantum gates are represented as a matrix



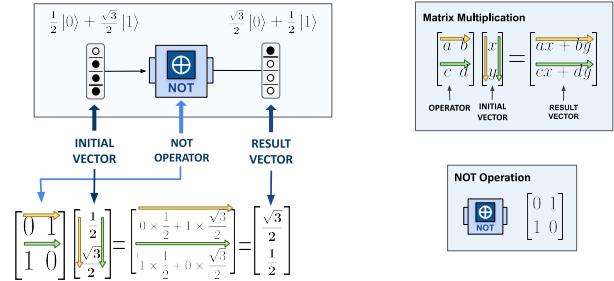
Matrix Multiplication



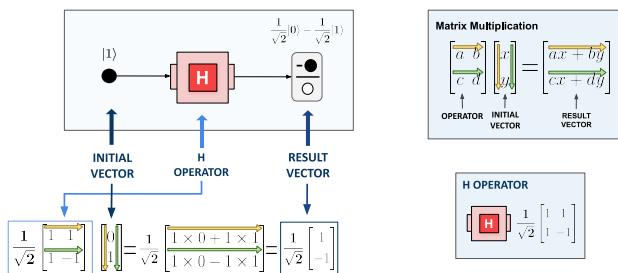
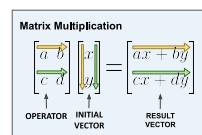
NOT Operation: Matrix Multiplication



NOT Operation: Matrix Multiplication



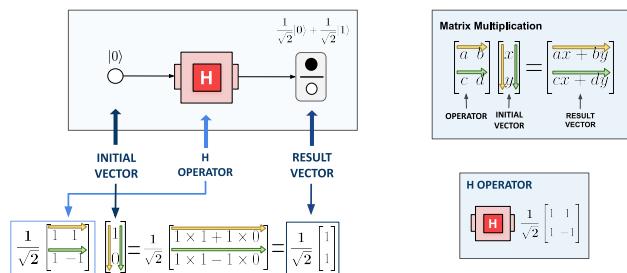
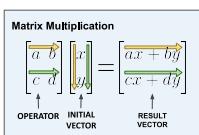
H Operation: Matrix Multiplication



H OPERATOR

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

H Operation: Matrix Multiplication



H OPERATOR

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

31

32

Summary

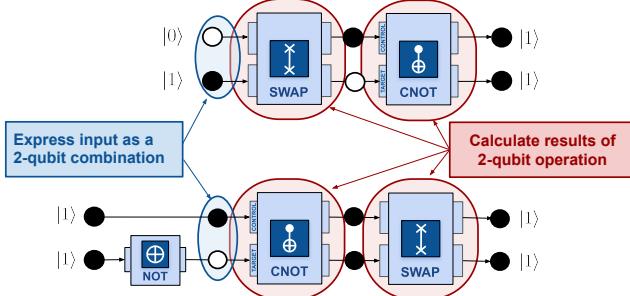
- A matrix is a 2-dimensional grid of numbers in which position is important
- Each qubit operation is stored as its own unique matrix
- Matrix multiplication is used to calculate the output of a quantum operation

Outline

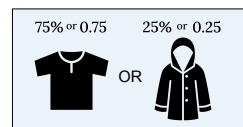
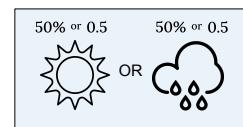
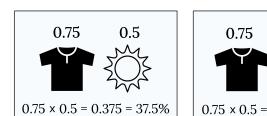
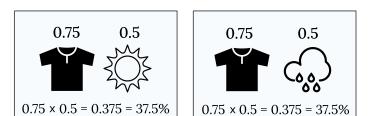
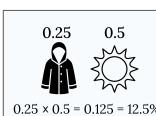
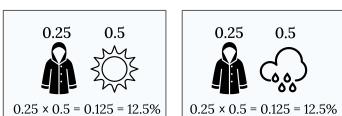
- Bra-ket Notation
- Vector Notation
- Single-Qubit Calculations (matrix multiplication)
- Multi-Qubit Calculations (single - double qubit notation)

33

Multiple Qubit Calculations



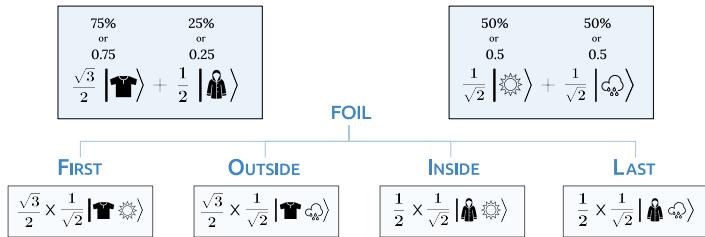
Remember how we took the probabilities of two **independent** events and calculated the probability of different combinations of events....



35

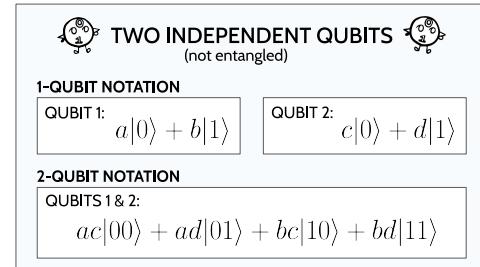
36

Expressing in 2-qubit bra-ket notation:

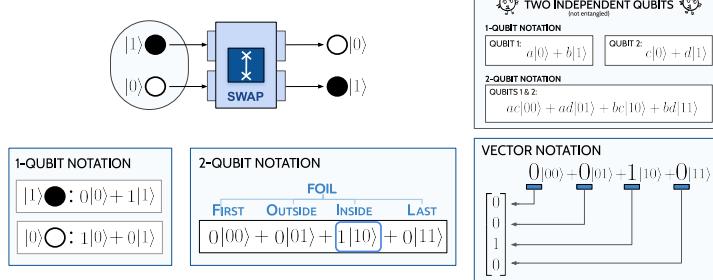


Called a **TENSOR PRODUCT** in Quantum Information Science (QIS).

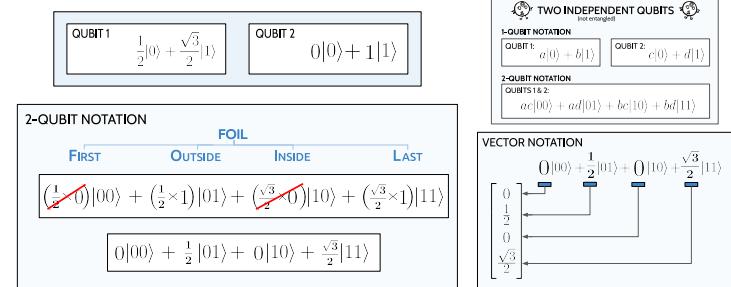
Notation for Independent Qubits



2-Qubit Notation: Example 1



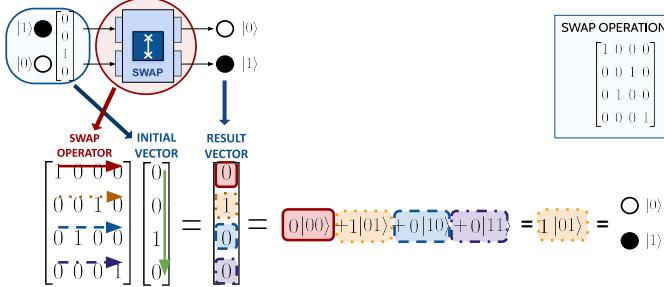
2-Qubit Notation: Example 2



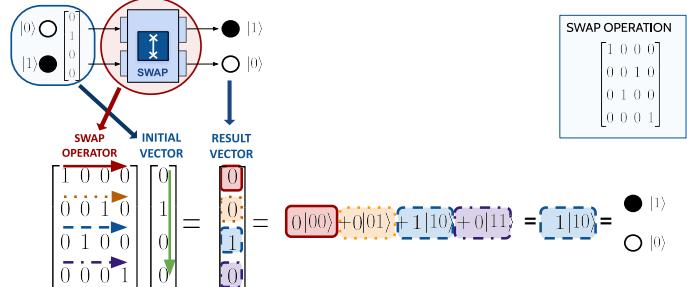
39

38

2-Qubit Calculation: Example 1



2-Qubit Calculation: Example 2 (try yourself)



41

40

Intuition behind the SWAP matrix

Starting: $a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$

$|00\rangle$ and $|11\rangle$ have no change when swapped

$|01\rangle \rightarrow |10\rangle$, and $|01\rangle \rightarrow |10\rangle$

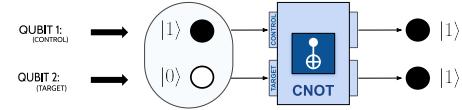
Therefore, c and b should swap probabilities

Notice the 1's on the diagonal for first and last, swap in the middle

SWAP OPERATION
$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$
$\begin{bmatrix} a \\ c \\ b \\ d \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a \\ c \\ b \\ d \end{bmatrix}$$

2-Bit Calculation: C-NOT Gate, Order Matters!



$$\begin{array}{ll} \text{QUBIT 1:} & |1\rangle \\ \text{QUBIT 2:} & |0\rangle \end{array} \xrightarrow{\text{CNOT}} \begin{array}{ll} \text{QUBIT 1:} & |1\rangle \\ \text{QUBIT 2:} & |1\rangle \end{array}$$

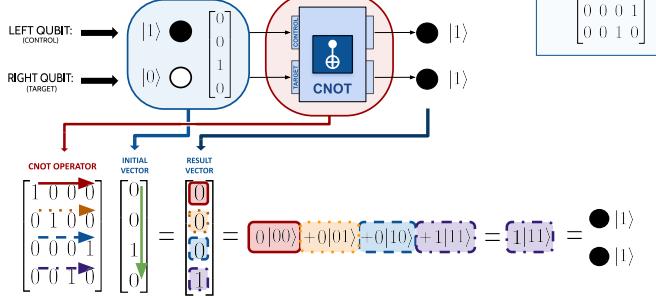
Control bit must always be LEFT Qubit

$$\begin{array}{c} \text{FOIL} \\ \text{FIRST OUTSIDE INSIDE LAST} \end{array} \\ \begin{array}{c} 0|00\rangle + 0|01\rangle + 1|10\rangle + 0|11\rangle \\ \text{INITIAL VECTOR} \end{array}$$

43

44

New Gate: C-NOT



CNOT OPERATION
$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Some intuition with the CNOT matrix

C: $|0\rangle$ then no change to the target
 $|00\rangle \rightarrow |00\rangle$
 $|01\rangle \rightarrow |01\rangle$

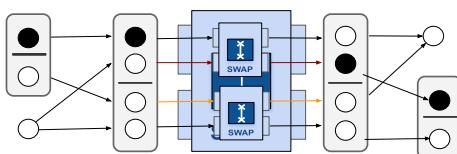
C: $|1\rangle$ then the target toggles
 $|10\rangle \rightarrow |11\rangle$
 $|11\rangle \rightarrow |10\rangle$

Notice where the 1's are - down the diagonal for 00 and 01, then swapping the last two.

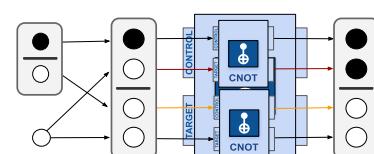
45

46

Visual Representation: 2-Qubit Operation (SWAP) & Superposition Input



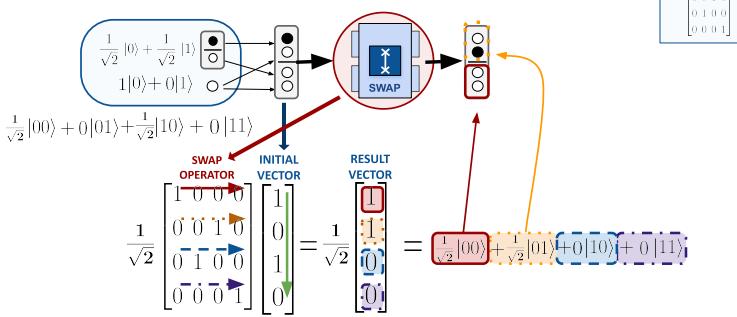
Example 2: 2-Qubit Operation (C-NOT) & Superposition Input



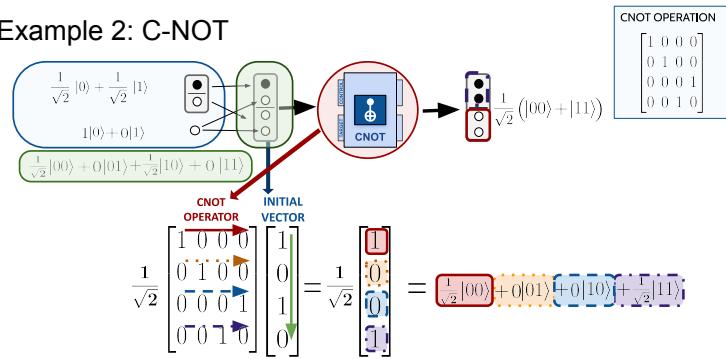
47

48

2-Qubit Operation, Superposition Input, Calculation



Example 2: C-NOT



49

Summary

To perform multiple qubit operations with inputs in superposition:

- 1) Put qubit state into multi-qubit notation
- 2) Calculate the result
 - a) Visual Representation: Pass through each pair through its own gate
 - b) Matrix Notation: Matrix multiplication of gate operation matrix and qubit state vector
 - i) Note: This is the same as what you do when it's not in superposition

51